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1 Introduction

The standard mathematical programming problem involves finding an optimal solution

for just one decision maker. But many planning problems contain an hierarchical decision

structure, each with independent, and often conflicting objectives. These types of problems

can be modeled using a multilevel programming approach. Bilevel programming is the

simpliest class of multilevel programming problems in which there are two independent

decision makers. An upper level decision maker and a lower level decision maker. One

example might be the CEO of a company as the upper level decision maker and the head

of a division of the company as the lower level decision maker.

Algorithms have been proposed to solve the bilevel linear programming problem and

the mixed integer binary bilevel linear programming problem. In this paper, we develop an

branch and bound algorithm for solving the binary bilevel linear programming problem. In

section 2, we present the formulations for the various bi-level linear programming problems

and discuss previous results. Section 3 contains results we use to establish upper bounds

for the branches of the branch and bound tree. Our algorithm is contained in section 4 and



section 5 contains computational results.

2 Bilevel Programming

Bilevel programming problems are characterized by two levels of hierarchical decision mak-

ing. The top planner makes its decision in full view of the bottom planner. Each planner

attempts to optimize its objective function and is affected by the actions of the other

planner. The properties of bilevel programming problems are summarized as follows: [2]

1. The system has interacting decision making units within a hierarchical structure.

2. The lower unit executes its policies after, and in view of, the decisions of the higher

unit.

3. Each level maximizes net benefits independently, no compromise is possible.

4. The effect of the upper decision maker on the lower problem is reflected in both its

objective function and set of feasible decisions.

This idea was further developed by Bard and Falk in a 1989 paper [1] where they

considered the following mixed integer bi-level linear programming problem. We use BLPP

to denote bi-level linear programming problem.

Let x1 be an n11-dimensional vector of continuous variables and x2 be an n12-dimensional

vector of discrete variables, where x ≡ (x1, x2) and n1 = n11+n12. Similarly let y1 be an n21-

dimensional vector of continuous variables and y2 be an n22-dimensional vector of discrete

variables, where y ≡ (y1, y2) and n2 = n21 + n22.

This leads to

max
x

F(x,y) = c11x1 + c12x2 + d11y1 + d12y2 (1a)

subject to

max
y

f(y) = d21y1 + d22y2 (1b)



subject to

g(x,y) = A1x1 + A2x2 + B1y1 + B2y2 ≤ b (1c)

x ≥ 0, y ≥ 0 x2, y2 integer. (1d)

Definition 1 For x ≥ 0, x2 integer, let Ω(x) = {y : y ≥ 0, y2 integer, g(x,y) ≤ b} and

M(x) = {y : arg max{f(y’) : y’ ∈ Ω(x)}}.

Definition 2 If ȳ ∈ M(x̄) then ȳ is said to be optimal with respect to x̄ ; such a pair is

said to be bi-level feasible.

Definition 3 A point (x∗,y∗) is said to be an optimal solution to the BLPP if

a. (x∗,y∗) is bi-level feasible ; and,

b. for all bi-level feasible pairs (x̄, ȳ), F (x∗,y∗) ≥ F (x̄, ȳ).

The three normal fathoming rules when using a branch and bound method for a general

mixed integer programming problem are:

Rule 1 The relaxed subproblem has no feasible solution.

Rule 2 The solution of the relaxed subproblem is no greater than the value of the current

best feasible solution.

Rule 3 The solution of the relaxed subproblem is feasible to the original problem.

Bard and Falk [1] showed that when solving the BLPP only rule 1 can be applied. They

produced counter examples to show that rules 2 and 3 do not always apply when solving

the (mixed) integer BLPP. Thus a new branch and bound strategy needed to be developed

to solve the (mixed) integer BLPP.

In this paper, we consider the following (purely integer) binary bilevel linear program-

ming problem.

max
x1

f1(x
1, x2) = c11x1 + c12x2 (2a)



subject to

max
x2

f2(x
1, x2) = c21x1 + c22x2 (2b)

subject to

A1x1 + A2x2 ≤ b2 (2c)

x1 = {x1
1, x

1
2, . . . , x

1
n1} (2d)

x2 = {x2
1, x

2
2, . . . , x

2
n2} (2e)

x1
j ∈ {0, 1}, j = 1, 2, . . . , n1 (2f)

x2
i ∈ {0, 1}, i = 1, 2, . . . , n2. (2g)

Note that the leader’s variables are chosen first and thus become a constant in the

followers objective function and do not affect its optimization. In 1990, Wen and Yang [3]

developed a branch and bound algorithm to solve the mixed integer binary bi-level linear

programming problem. In their formulation, the followers variables were not required to be

binary but were continuous variables only restricted to be non-negative. Their algorithm

used upper and lower bounds to prune off the tree but did not use upper bounds to decide

which were the the most efficient branches to chose in the tree. The algorithm proposed

in this paper generalizes many of the ideas originally proposed by Wen and Yang and will

impose a preferential choice on which branch to take in the tree based on calculating upper

bounds for the leader’s objective function.

Wen and Yang utilized a particular notation for the value of the leader’s variables at

any level in the branch and bound tree. This notation will also be used in this paper.

This notation is defined as follows:

k: the order number of the current node in the branch-and-bound tree:

J0
k = {j|x1

j is a free binary variable, j = 1, 2, . . . , n1};
J+

k = {j|x1
j is fixed at 1, j = 1, 2, . . . , n1};



J−k = {j|x1
j is fixed at 0, j = 1, 2, . . . , n1};

This allows for the formulation of the binary problem (TPf ) in terms of fixing of some

of the leader’s variables as follows:

(TPf ): max
x1

f1 =
∑

j∈J0
k

c11
j x1

j +
∑

j∈J+
k

c11
j +

n2∑

i=1

c12
i x2

i (3a)

subject to

max
x2

f2 =
∑

j∈J0
k

c21
j x1

j +
∑

j∈J+
k

c21
j +

n2∑

i=1

c22
i x2

i (3b)

subject to
∑

j∈J0
k

a1
jx

1
j +

n2∑

i=1

a2
i x

2
i ≤ b− ∑

j∈J+
k

a1
j (3c)

x1
j ∈ {0, 1}, j ∈ J0

k (3d)

x2
i ∈ {0, 1}, i = 1, 2, . . . , n2 (3e)

where ai
j is the jth column of the matrix, Ai.

Relaxing the TPf by removing the follower’s objective function creates a problem de-

noted as Pf . It appears, after minor rearrangement, as follows:

(Pf ): max
x1

g =
∑

j∈J0
k

c11
j x1

j +
∑

j∈J+
k

c11
j +

n2∑

i=1

c12
i x2

i (4a)

subject to
n2∑

i=1

a2
i x

2
i ≤ b− ∑

j∈J+
k

a1
j −

∑

j∈J0
k

a1
jx

1
j (4b)

x1
j ∈ {0, 1}, j ∈ J0

k (4c)

x2
i ∈ {0, 1}, i = 1, 2, . . . , n2 (4d)



3 BOUNDING THEOREM AND LEMMA

In their paper Wen and Yang proved the following:

Lemma 1 [3]

Given two linear programming problems:

(P ) : max Z =
n∑

j=1

cjxj

st :
n∑

j=1

ajxj ≤ b

xj ≥ 0, j = 1, 2, . . . , n

and

(P 1) : max Z1 =
n∑

j=1

cjxj

st :
n∑

j=1

ajxj ≤ b + θ

xj ≥ 0, j = 1, 2, . . . , n

where θ is a m× 1 parameter vector.

Then, if

Z∗ is the optimal objective value of P ,

Y ∗ is a 1×m vector, denoting the dual optimal solution of P ,

Z1∗ is the optimal objective value of P 1,

then Z1∗ ≤ Z∗ + Y ∗θ.

Theorem 1 Consider the following problem denoted problem B:

(B) : max ZB =
n2∑

i=1

c12
i x2

i

st :
n2∑

i=1

a2
i x

2
i ≤ b



x2
i ≥ 0, x2

i ≤ 1 i = 1, 2, . . . , n2

Let Z∗
B be the optimal objective function value for problem B above. Also let Y ∗ be the

optimal dual solution of problem B. Then an upper bound, ZU , is established for the

leader’s objective function value in problem TPf where:

ZU = Z∗
B +

∑

j∈J+
k

(c11
j − Y ∗

Ba1
j) +

∑

j∈J0
k

max{(c11
j − Y ∗

Ba1
j), 0} (5)

That is f ∗1 ≤ ZU .

Proof: Relax problem Pf by replacing the constraint

x2
i ∈ {0, 1}, i = 1, 2, . . . , n2 with x2

i ≤ 1, x2
i ≥ 0, i = 1, 2, . . . , n2.

This relaxation produces a problem we denote as LPf .

(LPf ) : max g =
n2∑

i=1

c12
i x2

i +

K︷ ︸︸ ︷∑

j∈J0
k

c11
j x1

j +
∑

j∈J+
k

c11
j

st :
n2∑

i=1

a2
i x

2
i ≤ b−

θ︷ ︸︸ ︷∑

j∈J+
k

a1
j −

∑

j∈J0
k

a1
jx

1
j

x1
j ∈ {0, 1}, j ∈ J0

k

x2
i ≤ 1, x2

i ≥ 0 i = 1, 2, . . . , n2.

Let g∗ be the optimal objective function of the above LPf with optimal values {x1∗
j } of

the variables {x1
j}. Then we obtain the following linear programming problem.

(LP
′
f ) : max g =

n2∑

i=1

c12
i x2

i + K
′

st :
n2∑

i=1

a2
i x

2
i ≤ b− θ

′

x2
i ≤ 1, x2

i ≥ 0 i = 1, 2, . . . , n2



where K
′
is a constant determined by evaluating

∑
j∈J0

k

c11
j x1

j +
∑

j∈J+
k

c11
j using the values {x1∗

j }

and θ
′
is similarly a constant calculated from

∑
j∈J+

k

a1
j +

∑
j∈J0

k

a1
jx

1
j once again using {x1∗

j }.
Then by applying Lemma 1 to LPf

′ and B:

g∗ −K
′ ≤ Z∗

B − Y ∗
Bθ

′

g∗ ≤ ZB ∗+
∑

j∈J0
k

c11
j x1∗

j +
∑

j∈J+
k

c11
j − Y ∗

B(
∑

j∈J+
k

a1
j +

∑

j∈J0
k

a1
jx

1∗
j )

= Z∗
B +

∑

j∈J+
k

(c11
j − Y ∗

Ba1
j) +

∑

j∈J0
k

(c11
j − Y ∗

Ba1
j)x

1∗
j

≤ Z∗
B +

∑

j∈J+
k

(c11
j − Y ∗

Ba1
j) +

∑

j∈J0
k

max{c11
j − Y ∗

Ba1
j , 0}

Hence g∗ ≤ ZU .

But since problem Pf is less constrained than problem TPf , f ∗1 ≤ g∗ and so also f ∗1 ≤ ZU .

4 ALGORITHM

In the algorithm, N is the current level in the tree, k is the counter for evaluated nodes

and

Tj =





0 if both branches from the current node at level j have not been examined

1 if one branch from the current node at level j has been examined

2 if both branches from the current node at level j have been examined

Step 1 Initialization

N = 0, k = 0

J0
k = {1, 2, . . . , n1}, J+

k = J−k = ∅
Tj = 0, j = 1, 2, . . . , n1.

This indicates that all the leader’s variables are free.



Solve problem F:

(F :) max
n2∑

j=1

c22
j x2

j

st :
n2∑

j=1

a2
jx

2
j ≤ b

x2
j ∈ {0, 1} j = 1, 2, . . . , n2

Let the optimal solution be x2∗ and let x1∗ = (

n1︷ ︸︸ ︷
0, 0, 0, . . . , 0 ) and let Z∗ be the value of the

leader’s objective function f ∗1 , evaluated using the values x1∗ and x2∗.

Step 2 Solve problem B:

(B) : max ZB =
n2∑

j=1

c12
j x2

j

st :
n2∑

j=1

a2
jx

2
j ≤ b

x2
j ≥ 0, x2

j ≤ 1 j = 1, 2, . . . , n2

This problem results in Z∗
B, the optimal objective function value and Y ∗

B, the optimal dual

solution. Calculate H(j) = c11
j − Y ∗

Ba1
j , j = 1, 2, . . . , n1.

In order to maximize the efficiency of branching, we establish an upper bound on the

path chosen in the tree. This is the function of step 3, the branching step. The value ZU
N is

determined by finding the largest of ZU+
N , the upper bound on the objective function when

setting x1
N = 1 and ZU−

N , the upper bound on the objective function when setting x1
N = 0.

Step 3 Branching

From Theorem 1, ZU = Z∗
B +

∑
j∈J+

k
H(j) +

∑
j∈J0

k
max{H(j), 0}.

Let S =
∑

j∈J+
k

H(j) and let W =
∑

j∈J0
k
max{H(j), 0}

and N = N + 1 k = k + 1.



Calculate the upper bound of the leader’s objective function ZU
N for the branch down-tree

for x1
N = 0. This will be denoted as ZU−

N .

Loop 1: Set S = W = 0

For i = 1 to n1

If x1
i = 1

S = S + H(i)

else

if x1
i = 0

W = W + max{H(i), 0}
else

end for loop

end loop

ZU−
N = Z∗

B + S + W

Calculate ZU+
N , the branch where x1

N = 1.

This is achieved in a very similar manner to the calculation of ZU−
N . Set x1

N = 1 then

execute Loop 1 and finally ZU+
N = Z∗

B + S + W .

If ZU+
N ≥ ZU−

N then the upper bound ZU = ZU+
N , x1

N = 1 and TN = TN + 1, otherwise

ZU = ZU−
N , x1

N = 0 and again TN = TN + 1

Of course, the upper bounds need to be checked against the current best solution of the

objective function, Z∗. If the upper bound on that particular branch is not greater than

the current best solution then that branch is fathomed.

Step 4 Fathoming Check

If ZU ≤ Z∗ then set TN = 2, go to Step 6.

else go to Step 5.



The next step checks if N = n1, that is if all the leader’s variables have been assigned

a value. Then the follower’s problem, L, with the given values of the leader’s variables and

if feasible the solution, ZL, is compared to the current best solution.

Step 5 Calculate Feasible Solutions

If N 6= n1 then go to Step 3

else solve problem L

where

(L:) max
n2∑

j=1
c22
j x2

j +
∑

j∈J+
k

c11
j

st:
n2∑

j=1
a2

jx
2
j ≤ b− ∑

j∈J+
k

a2
j

x2
j ∈ {0, 1} j = 1, 2, . . . , n2.

Let the current values of the leader’s variables be x1L and the solution of problem L be x2L

Let ZL be the leader’s objective function value evaluated using x2L and x1L.

If ZL > Z∗ AND problem L is feasible,

then update Z∗, x2∗ and x1∗ from ZL, x2L and x1L respectively , go to Step 6;

else go to Step 6.

The algorithm now proceeds back up the tree, examining branches and their upper

bounds. Each upper bound is compared to the current best solution to determine whether

the branch can be fathomed or must be considered further. This is performed in the next

step.



Step 6 Backtracking

If TN = 2 then set

TN = 0, x1
N = 0, N = N − 1

If N = 0 then go to Step 7.

else go to Step 6;

else TN = TN + 1.

If x1
N = 0 then ZU = ZU+, x1

N = 1, go to Step 4.

else ZU = ZU−
N , x1

N = 0 go to Step 4.

All that remains is to terminate the process at the point where all viable branches and

leaves have been utilized.

Step 7 Terminate

Stop execution of the algorithm and output the solution.

5 COMPUTATIONAL RESULTS

To evaluate the results of the algorithm it was coded into a SAS program and bi-level

problems were constructed randomly using the following guidelines.

The leader’s objective function coefficients were chosen randomly between the limits of

-30 to +30. The follower’s objective function coefficients were chosen randomly between

-12 and +12. The constraint matrix coefficients were chosen randomly between -18 and

+18 and the bj, or resource values were restricted to be within the range 0.5 to 0.75 of the

sum of the aj for the jth constraint. This was to insure a high probability of feasibility.



In both table 1 and table 2 the column headers represent

evaluated nodes = number of nodes where an upper bound was established

as a percentage of total nodes in the tree.

lpcalls = number of LP problems solved

as a percentage of leaves in the tree.

kstar = the node number where the optimal solution was obtained

as a percentage of nodes in the tree.

In Table 1, 10 randomly constructed problems were solved for each problem type.

n1 n2 evaluated nodes total nodes lpcalls leaves kstar
5 5 55% 62 39% 32 27%
5 8 72% 62 62% 32 36%
5 10 75% 62 73% 32 34%
8 5 37% 510 23% 256 13%
8 8 43% 510 31% 256 25%
8 10 64% 510 58% 256 30%
10 5 15% 2046 7% 1024 4%
10 10 51% 2046 41% 1024 11%

Table 1: Results of 10 samples for each n1× n2 problems

The results in Table 2 are from randomly constructing 100 problems for each problem

type. This set of computations was mainly performed to check the statistical validity of

the results in Table 1.

Several conclusions may be drawn from these computational results. In their paper Wen

and Yang [3] suggested in their conclusions that there may well be a correlation between the

effectiveness of their bounding function and the ratio of the number of leader’s variables, n1,

to the number of follower’s variables, n2. The results seem to confirm this. It is apparent

from the tables that when the numbers of both leader’s and follower’s variables are similar

both the evaluated nodes percentage and the kstar percentage figures are larger. However

if n1 > n2 then both these percentages, which measure the effectiveness of the bounding



n1 n2 evaluated nodes total nodes lpcalls leaves kstar
5 5 51% 62 36% 32 30%
5 8 69% 62 57% 32 35%
5 10 71% 62 64% 32 33%
8 5 23% 510 14% 256 12%
8 8 49% 510 37% 256 17%
8 10 57% 510 45% 256 20%
10 5 13% 2046 8% 1024 7%
10 10 52% 2046 42% 1024 21%

Table 2: Results of 100 samples for each n1× n2 problems

function at finding a tight upper bound for the optimal feasible solution, are significantly

lower. In the case of the 10 × 5 problem these values drop to very low levels indicating

excellent performance by both the bounding function and the algorithm in general. On the

other hand it would seem that if n2 > n1 the effectiveness deteriorates giving the highest

percentages.

Examining the performance of the algorithm and the use of the upper bounds at each

level in the tree to choose branching means examining kstar. It would appear from the low

values of kstar, all lower than 35%, that the addition of controlling the decision by utilizing

the ZU
N was an effective measure in tightening the bounds in the solution of the problem.
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