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Abstract

The project portfolio optimization problem is a difficult practical problem, for which a comprehen-
sive model and solution methodology has not been developed in the existing limited approaches
in the literature. In this study, we fill this gap by formally defining and effectively modeling sev-
eral complexities that are inherent in this problem, and developing efficient solution procedures.
The proposed approach is the first such approach that models the endogenous uncertainty inher-
ent in this decision process, and at the same time includes a computationally practical solution
procedure. The implementation of the model by organizations can lead to significant increases in
project returns. From a theoretical standpoint, a new and efficient formulation technique to model
nonanticipativity in multistage stochastic programs with endogenous uncertainty is developed, en-
abling direct scenario based decomposition in such problems. In addition, a feasible dual conversion
based tight lower bounding algorithm that can also be used for any similarly structured problem
is developed.

1 Introduction

Project portfolio management involves research and development (R&D) projects aimed to design,
test and improve a technology, or the process of building a technology. Technology development is
often an essential part of the operational strategy of an organization, during which deployment or
implementation decisions are made. In most cases, organizations have several potential technology
projects with different characteristics that they can choose to invest in and develop using available
resources. Selection of projects and allocation of resources to the selected projects are important
decisions with huge economic implications for an organization.

Characteristics of technology projects involve resource levels required for research and development,
and projected returns after deployment, which are unknown at the time of investment, but for which
some information on the uncertainty is available. Given these uncertainties and resource limitations
over a planning horizon, the project portfolio optimization problem deals with the selection of R&D
projects and determination of optimal resource allocations for the current planning period such that
the expected total discounted return or a function of this expectation for all projects over an infinite
time horizon is maximized.
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Depending on the application, the set of candidate projects may have several attributes. For
instance, a technology project may require a deployment phase after development, which amounts
to a delay in return realization. A technology can be developed over multiple years, however a fixed
operating cost is incurred for each project that remains active, i.e. where development has started
but is not complete. Furthermore, multi-way dependencies may exist between technologies, which
implies that the joint return of two dependent technologies can be different from the sum of their
individual returns.

Markowitz (1952) laid the background for modern financial portfolio theory, which has been studied
extensively since then. Markowitz (1952) suggests that investors should select portfolios based on
overall risk-reward characteristics of the securities, rather than investing on a single security with
the best risk-reward characteristic. Tobin (1958) studies super efficient portfolios with risk free
assets, while Sharpe (1964) develops the capital asset pricing models. Since then, many other
modeling and optimization techniques have been proposed for financial portfolio optimization.

Although at first glance, it may seem that financial portfolio optimization theory could be directly
applied to project portfolio management, there are clear differences between the two problems. One
distinction is in the realization of returns. The realization time and the variance in the return of
a project is dependent on the investment made on that project. However, for financial securities,
both the risk and the time of return realization is independent of the amount of the security that
is purchased. Assuming that no one investor will seek to make a single purchase of all or the vast
majority of a company’s stocks that will cause the price of the security to change by virtue of the
purchase itself, the value of the security will solely be based on the performance of the company
in question. A second difference between the two problems is about the correlation among project
returns. In financial portfolio theory, the correlation in returns is assumed to be independent of
the way in which resources are allocated. On the other hand, the correlation among the returns of
projects is dependent on investment levels, because resources spent on one project are taken away
from other projects, thus preventing early return realization in these projects. Finally, a third
distinction is the dependencies of technology projects in terms of produced returns. In financial
theory, the cumulative return from two purchased securities is assumed to be equal to the sum of
the individual returns of the securities. However, as noted above, projects have dependencies which
can have a positive or negative effect in the realization of cumulative joint returns.

Despite the importance and economic significance of project portfolio selection and the existence
of several operations research models, the industrial use of these models has been limited. This is
mainly due to the fact that none of the proposed models has been able to capture the full range
of complexity that exists in project portfolios. Reyck et al. (2005) study the impact of project
portfolio management techniques on the performance of projects and portfolios of projects. The
authors identify certain key components required for an effective portfolio management approach,
which include the following capabilities: capturing of financial returns and risks of assets, modeling
interdependencies, determination of prioritization, alignment and selection of projects, modeling
organizational constraints and ability to dynamically reassess the portfolio. Linton et al. (2002)
provide a review of proposed project portfolio management methods, and categorize the existing
methods into three groups. The first category contains approaches based on net present value
(NPV) calculations, while the second group consists of scoring methods and the last group covers
other decision analysis tools. However, none of the considered approaches are able to model and
deliver the set of capabilities identified by Reyck et al. (2005).

The proposed models for project portfolio management include capital budgeting models, which
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typically use accounting based criteria, such as return on investment or internal rate of return.
These models capture interdependencies between different projects, but fail to model the uncer-
tainty in returns and required investments (Luenberger 1998). More recent project portfolio models
capture both the uncertainty in returns and interdependencies. However, these models assume that
the required cash flows for projects are known, and the investment decisions consist of binary start-
ing or stopping decisions for projects (Ghasemzadeh et al. 1999, Gustafsson and Salo 2005). One
example where the amount of resources allocated to each project is treated as a decision variable
is given by Norkin et al. (1998). The example is formulated as a stochastic integer program, but
the interdependencies between multiple projects are not modeled.

Other approaches to project portfolio management include real options based methods. Despite
some disadvantages from an optimization perspective, these methods are superior to NPV based
methods. Bardhan et al. (2006) propose a multi-period optimization model where the objective
is based on real options values of the portfolio calculated according to the results from Bardhan
et al. (2004). Campbell (2001) and Lee et al. (2001) model project contingencies as real options
to determine optimal startup dates for the projects. Tralli (2004) devises a real options valuation
architecture from a decision tree analysis structure and presents a case study. Similarly, Wu and
Ong (2007) combines the mean-variance model of classical financial theory with real options, and
describe a project selection methodology based on the developed framework. However, one major
disadvantage of real options based approaches is that they require the estimation of cash flows for the
projects. Given these estimates, these models try to determine the optimum starting, continuation
or completion times for the projects in a portfolio. Thus, despite its significance, the option of
rebalancing through allocation of resources in each planning period is not modeled (Cooper et al.
2001). Chan et al. (2007) emphasize this problem and suggest a dynamic methodology based on a
two-phase model of project evolution. However, the model does not capture the interdependencies
or resource allocation decisions discussed above.

There are also other somewhat more simplistic approaches to the technology project portfolio prob-
lem, which either contain deterministic models or include several restrictive assumptions. Dickinson
et al. (2001) present a model developed to optimize a portfolio of product development improvement
projects. Using a dependency matrix, which quantifies the interdependencies between projects, a
deterministic nonlinear integer programming model is developed to optimize project selection. April
et al. (2003) describe a simulation optimization tool for technology project portfolio management.
The tool utilizes metaheuristics to search for good technology portfolios, and is limited in capturing
the interdependencies among technologies. Elfes et al. (2005) address the problem of determining
optimal technology investment portfolios that minimize mission risk and maximize the expected
science return of space missions. The solution approach described in the study is based on a de-
terministic linear programming formulation and sensitivity analysis. Lincoln et al. (2006) develop
a method for prioritization of technology investments using a deterministic linear programming
formulation to maximize an objective function subject to overall cost constraints. Goldner and
Borener (2006) describe a quantitative framework to evaluate the performance of research portfo-
lios, where the developed tool is used to evaluate and explore independent investments strategies,
but no numerical optimization techniques are described.

In addition to these models, most strategic planners and project portfolio managers rely on tools
based on expert opinions, such as Analytical Hierarchy Process and Quality Function Deployment,
in planning the funding of technology development (Thompson 2006). Similar systematic evaluation
methods are also proposed by Sallie (2002) and Utturwar et al. (2002), where the authors propose
bilevel approaches in selecting technologies to invest. The latter study also contains an optimization
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procedure based on a Genetic Algorithm implementation. Clearly, these tools are also very limited
in their ability to fully quantify the complicated return and investment structure inherent in project
portfolios.

In summary, the project portfolio optimization problem is a difficult practical problem, for which
a comprehensive model and solution methodology has not been developed in the existing limited
approaches in the literature. In this study, we fill this gap by formally defining and effectively
modeling several complexities that are inherent in this problem, and developing efficient solution
procedures. More specifically, contributions of this study include the following: A comprehensive
model that captures all relevant concerns in project portfolio management has been developed. To
the best of our knowledge, it is the first such approach that (i) provides an accurate representation
of the stochastic decision process in project portfolio management, (ii) models the endogenous
uncertainty inherent in this decision process, and at the same time (iii) includes a computationally
practical solution procedure. In addition, from a theoretical standpoint, contributions are as follows:
(i) a new and efficient formulation technique to model nonanticipativity in multistage stochastic
programs with endogenous uncertainty is developed, (ii) the developed formulation enables scenario
based decomposition in such problems, in addition to the application of other methods developed
for classical multistage stochastic programs, and (iii) a tight lower bounding algorithm based on
feasible dual conversion that can be used for any similarly structured problem is developed. As
shown in Figure 1, our proposed methodology is able to capture all the important aspects required
from a project portfolio optimization tool, as defined by Reyck et al. (2005), while all other existing
methodologies fail to account for two or more of the complexities inherent in the project portfolio
optimization problem.

The remainder of this paper is structured as follows. In Section 2 we describe a mathematical
representation for the technology portfolio management problem and study its complexity. In
Sections 3 and 4 we discuss multistage and two-stage stochastic programming formulations, while
in Section 5 an efficient solution procedure for the resulting problems is described. In Section 6,
we present some computational results and Section 7 is the conclusion with a discussion of possible
extensions.

2 Mathematical Representation

The project portfolio optimization problem can formally be defined as follows. Assume a set N
of projects with annual performance levels Zi ∈ R+, implementation times ∆i ∈ R+, required
investment levels θi ∈ R+, annual fixed activity costs fi ∈ R+ and a set of depending technology
projects Di ⊂ N , for each i ∈ N . Although only two-way dependencies between technology projects
are used in this study, the proposed models can be extended to handle multi-way dependencies in
a similar fashion. We let Zij ∈ R be the joint annual performance level for technology i ∈ N
and j ∈ Di, and define it as a function of Zi and Zj . Furthermore, a sequence of investment
planning periods t = 1, 2, ..., T with available resource levels, i.e. budgets Bt ∈ R+, are assumed.
For presentation purposes, the models in the paper are described for a single resource application,
however extension to multiple resources is trivial. The objective is to determine an investment
schedule such that some function of the total discounted return over an infinite time horizon is
maximized while total investment in a given period t does not exceed Bt. In typical applications,
the decision maker is interested in the investment schedule for the current period only, which should
take into account future realizations of the parameters. Hence, a realistic assumption is that the
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Figure 1: Summary of the existing literature on project portfolio optimization and contributions
of the proposed methodology
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problem will be solved each planning period to determine the best investment policy for that period,
considering the past and future investments.

In practice, almost all of the above parameters may contain a certain level of uncertainty. However,
in most applications, the level of variance is significant only in two of the parameters, namely the
returns Zi and required investment levels θi . Note that Zij is defined as a function of Zi and Zj .
Hence, for modeling purposes, we approximate all other parameters with their expected values, and
assume that joint and marginal probability distributions of the returns and required investment
levels for the technologies are known or well estimated. Once a mathematical model is developed
that accounts for the stochasticity in these two parameters, uncertainty in other parameters can
be captured through what-if analyses.

The following complexity analysis shows that even the simplest instances of the project portfolio
optimization problem fall into the category of NP-hard optimization problems.

Proposition 1. Project portfolio optimization is NP-hard.

Proof. Proof We first show that the deterministic version of the problem is NP-hard. The proof
of NP-hardness is by restriction to the bin packing problem. Consider an instance of the project
portfolio management problem in which Bt = B, θi + fi ≤ B, ∆i = 0, and Di = ∅ for all
i ∈ N ,t = 1, 2, ..., |N |. Let S∗ be the optimal schedule for this instance and let t∗ be the latest
investment period in S∗. It is easily seen that S∗ is optimal if and only if the optimal solution for
an instance of the bin packing problem with bin capacities B and item sizes θi + fi is t∗. It follows
that stochastic version of the project portfolio optimization problem is also NP-hard.

Given the uncertainty in the problem parameters of the project portfolio optimization problem,
it is natural to assume that the decision maker would be interested in maximizing the expected
value -or a function of the expected value- of total return. For presentation purposes, we assume a
risk-neutral objective function throughout the rest of this paper. However, several other objectives
that capture the risk attitude of the decision maker can be modeled and solved using the methods
described in this study. Given any such objective, the project portfolio management problem can
be expressed as:

max
x∈X

{g(x) = E[G(x, ξ)]} (1)

where x and ξ represent the vectors of decision variables and uncertain parameters (θi, Zi), respec-
tively. In addition, X ⊂ Rn is the set of feasible solutions and G(x, ξ) is the total return function.
Optimization problem (1) is difficult to solve, since exact evaluation of the expected value function
in the objective is not possible.

A natural temptation to solve (1) may involve replacing the uncertain parameters by their expected
values, and then solving the resulting so-called mean value problem, which is

max
x∈X

{G(x, ξ̄)} (2)

where ξ̄ = E[ξ] is the expectation of the random vector ξ. If x̄ represents the optimal solution to
(2), and x∗ is the true optimal solution to the stochastic optimization problem (1), then clearly

E[G(x̄, ξ)] ≤ E[G(x∗, ξ)] (3)
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Figure 2: Decision process for the technology portfolio management problem, where realization of
uncertainty is based on decisions made

The difference E[G(x∗, ξ)] − E[G(x̄, ξ)] measures how close the mean value solution is to the true
solution, and is usually called the expected value of the stochastic solution (Birge and Louveaux
1997). However, the mean value problem usually does not reflect the decision process in a stochastic
optimization problem correctly.

The decision process in the project portfolio management problem consists of recourse actions,
by which the portfolio can be rebalanced at each period. Hence, an appropriate approach is
to formulate problem (1) as a recourse problem, in which recourse actions can be taken after
uncertainty is disclosed over the investment periods. In the following sections, we study two recourse
models for the project portfolio management problem, and describe solution procedures for the two
formulations.

3 The Multistage Stochastic Programming Model

The decision process in the project portfolio management problem consists of a multistage and
multi-period structure, in which the goal is to determine an optimal allocation of the resources for
the current planning period. However, the realization of uncertain parameters and the possibility
of recourse actions in future periods must be accounted for in any optimal investment policy.
Hence, resource allocations for the current period should position the decision maker in the best
possible position against the uncertainties that will be realized in the future. The corresponding
decision process for the project portfolio management problem can be described as follows, which
is also represented in Figure 2, where examples of different investment levels leading to different
information availability for projects i, i′, j and j′ are shown.

The resource requirement θi for each project i is known with certainty at the end of period tiθ, in
which total investment in the project exceeds a threshold level Θθ

i , i.e. tiθ = mint{t|
∑

t′≤t xit′ ≥
Θθ

i }, where xit represents the investment for project i in period t. Similarly, we assume that the
uncertainty in the return of a project is revealed gradually over its development based on certain
threshold levels. This process is modeled by assuming that an initial performance assessment Ẑi

will be available at the end of period tiz = mint{t|
∑

t′≤t xit′ ≥ Θz
i } upon investing an amount

of Θz
i in the project. As a result of this assessment, probabilities of different performance levels
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Figure 3: Tree showing gradual resolution of uncertainty in two phases

are updated. This assumption enables the modeling of the option of terminating a project if the
initial assessment suggests that the probability of a high return is low for the project. Gradual
resolution of uncertainty can be explained further as follows. Assume that Zi can be realized at
one of two levels: L,H with pre-development probabilities pL and pH , respectively. After investing
an amount Θz

i in this project, an estimate Ẑi is made, which can be seen as an intermediate
realization of the uncertain parameter. If all uncertainty is resolved when technology development
is over, then the probabilities for the actual realizations of the possible outcomes will be dependent
on the intermediate realizations. This investment dependent probability distribution is described
in Figure 3, where probabilities of possible Zi values are updated according to the estimates Ẑi

which become available after investing Θz
i units of resources. If the development phase is continued,

return Zi will be known with certainty once all of the required resources are invested in project
i. Multiple phases of gradual uncertainty resolution can be modeled by adding more layers to the
described process, in the expense of adding more complexity to the stochastic problem.

The described process can be modeled as a multistage stochastic program, in which the uncertainty
is in required investment levels, updated return estimates and final return levels. However, a
complexity in this model is that the model contains endogenous uncertainty, i.e. realizations of
the uncertain parameters are dependent on the investment decisions in current and future periods.
Classical stochastic programming models assume that all stochastic processes in a given model
are exogenous, which implies that the times of realizations of the uncertain parameters are not
controlled by the decision maker, and the underlying scenario tree structure is known. However,
this is not the case for the project portfolio optimization problem. Such problems are generally
more difficult to formulate and solve than classical stochastic programming models, and there is
very limited literature on such problems, which we discuss in Section 5.

As in many other stochastic programs, it is reasonable to assume for the project portfolio opti-
mization problem that the random vector ξ has finite support or has a discrete distribution with
K possible realizations, i.e. scenarios, ξk := (θk

i , Ẑk
i , Zk

i ), k = 1, . . . ,K with corresponding proba-
bilities pk. Then, it becomes possible to express problem (1) as one large mathematical program.

Before describing the mathematical model, we first introduce some new notation. In addition to
the parameters described above, we let r be the discount factor throughout the planning period,
D be the set of technologies that have a dependency relationship with another technology, i.e.
D = {i|i ∈ N ,Di 6= ∅}, and also set ∆̄ = maxi{∆i}, ∆̄ij = max{∆i,∆j}. We also let Ykk′ and
Hkk′ be the set of technologies with different realizations of resource requirements and intermediate
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return estimates in scenarios k, k′, respectively, i.e. Ykk′ = {i|θk
i 6= θk′

i } and Hkk′ = {i|Ẑk
i 6= Ẑk′

i }.
Furthermore, we define the following decision variables for the problem, where the superscript k,
which indicates that the variables are defined for each scenario, is omitted for clarity.

xit :amount of investment in project i in period t, t = 1, 2, ..., T

τit :remaining required investment to complete the development of project i as
of the end of period t, t = 1, 2, ..., T

yit :1, if t > tiθ, t = 2, ..., T ; 0, otherwise

hit :1, if t > tiz, t = 2, ..., T ; 0, otherwise
αit :1, if project i is started on or before period t, t = 1, 2, ..., T

0, otherwise
βit :1, if development and deployment of technology i are completed on or

before period t, t = ∆i, ..., T + ∆i ; 0, otherwise
γit :1, if project i is terminated prematurely in or before period t, t = 2, ..., T

0, otherwise
δijt :1, if development and deployment of dependent technologies i and j are

completed on or before period t, t = 1, 2, ..., T + ∆̄ij ; 0, otherwise

This leads to the following multistage stochastic integer programming formulation:
Multistage Project Portfolio Optimization Problem(MPPM):

max
K∑

k=1

pk

∑
i∈N

[ ∑
t≤T−1

βk
i,t+∆i

Zk
i (1 + r)−(t+∆i) + βk

i,T+∆i
Zk

i

[(1 + r)−(T+∆̄)

r

+
∆̄−∆i−1∑

l=0

(1 + r)−(T+∆i+l)
]
+
∑
j∈Di
j>i

[ ∑
t≤T−1

δk
ij,t+∆̄ij

Z̃k
ij(1 + r)−(t+∆̄ij)

+δk
ij,T+∆̄ij

Z̃k
ij

[(1 + r)−(T+∆̄)

r
+

∆̄−∆̄ij−1∑
l=0

(1 + r)−(T+∆̄ij+l)
]]]

(4)

αk
it − βk

i,t+∆i
≥ 0 ∀i∈N ,∀t≤T,∀k (5)∑

t′≤t

xk
it′ −

(
max{(θk

i + tfi),maxt′≤t{Bt′}
)

αk
it ≤ 0 ∀i∈N ,∀t≤T,∀k (6)

∑
i∈N

xk
it ≤ Bt ∀t≤T,∀k (7)

xk
it −Bt(αk

it − βk
i,t+∆i−1 − γk

it) ≤ 0 ∀i∈N ,∀t≤T,∀k (8)

βk
i,t+∆̄ij

+ βk
j,t+∆̄ij

− δk
ij,t+∆̄ij

≤ 1 ∀i∈D,∀j∈Di,j>i,∀t≤T,∀k (9)

βk
i,t+∆̄ij

+ βk
j,t+∆̄ij

− 2δk
ij,t+∆̄ij

≥ 0 ∀i∈D,∀j∈Di,j>i,∀t≤T,∀k (10)

τk
it − τk

i,t−1 + xk
it − fi(αk

it − βk
i,t+∆i−1 − γk

it) ≥ 0 ∀i∈N ,∀t≤T,∀k (11)

xk
it − fi(αk

it − βk
i,t+∆i−1 − γk

it) ≥ 0 ∀i∈N ,∀t≤T,∀k (12)

τk
it + θk

i βk
i,t+∆i

≤ θk
i ∀i∈N ,∀t≤T,∀k (13)
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∑
t′<t

xk
it′ −Θθ

iky
k
it ≥ 0 ∀i∈N ,∀t≤T,t6=1,∀k (14)∑

t′<t

xk
it′ −

(
min{

∑
t′<t Bt′ , (θk

i + (t− 1)fi)} −Θθ
ik

)
yk

it ≤ Θθ
ik ∀i∈N ,∀t≤T,t6=1,∀k (15)∑

t′<t

xk
it′ −Θz

ikh
k
it ≥ 0 ∀i∈N ,∀t≤T,t6=1,∀k (16)∑

t′<t

xk
it′ −

(
min{

∑
t′<t Bt′ , (θk

i + (t− 1)fi)} −Θz
ik

)
hk

it ≤ Θz
ik ∀i∈N ,∀t≤T,t6=1,∀k (17)

βk
i,t+∆i

+ γk
it ≤ 1 ∀i∈N ,∀t≤T,t6=1,∀k (18)

αk
it − γk

i,t+1 ≥ 0 ∀i∈N ,∀t≤T,∀k (19)

xk
i1 −

K∑
k′=1

pk′xk′
i1 = 0 ∀i∈N ,∀k (20)

xk
it − xk′

it + Bt

 ∑
j∈Ykk′

(yk
jt + yk′

jt) +
∑

j∈Hkk′

(hk
jt + hk′

jt)

 ≥ 0 ∀i∈N ,∀t≤T,t6=1,∀k,k′ (21)

xk
it, τ

k
it, δ

k
ijt ≥ 0 ∀i∈N ,∀j∈Di,j>i,∀t,∀k (22)

αk
it, β

k
it, γ

k
it, h

k
it, y

k
it ∈ {0, 1} ∀i∈N ,∀t,∀k (23)

The objective function (4) in the above formulation assumes risk neutrality, and represents the
expected total discounted return of the project portfolio. The total return is expressed as a function
of the individual and joint returns depending on the deployment status of a developed technology.
Joint return terms Z̃ij are defined such that they represent the difference between the actual joint
return contribution Zij and the sum of two individual returns. In other words, if two technologies
are both implemented by period t, then the joint return contribution for that period is calculated
as Zij = Zi + Zj + Z̃ij , where Z̃ij can be positive or negative.

Constraint set (5) implies that project i must be started at least ∆i periods before the correspond-
ing technology is limited. Constraints (6) ensure that a positive investment must be made in order
to start a project. Furthermore, (8) requires that an investment on a project can be made only if it
is active, while (7) represents the resource limitations. Constraints (9)-(10) ensure that joint return
from two dependent technologies is realized when the implementation of both technologies are com-
plete. Constraints (11) calculate the required remaining investment for a technology development
project in a given period, and (12) implies that the investment on a technology development project
can not be less than the fixed cost incurred when the project is active. Constraints (13) ensure
that a technology development project is complete only if the required remaining investment is 0.
Furthermore, constraints (14)-(15) and (16)-(17) define indicator variables yk

it and hk
it, respectively.

Constrains (18) state that a technology development project is either terminated successfully or
unsuccessfully, while (19) ensures that a project is started before it is terminated.

In addition to the above, constraint set (20) represents the first stage nonanticipativity require-
ments, by ensuring that the decisions for the current period are the same for all scenarios. Notice
that the nonanticipativity in other first stage variables are automatically satisfied if all first stage
investment levels are the same. Since it is assumed that the uncertain variables are realized after
certain levels of investment are made, a similar nonanticipativity structure must also be enforced
between scenarios that share the same information history in later periods. In classical stochas-
tic programming, nonanticipativity can explicitly be stated similar to (20), due to the exogenous
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nature of uncertainty in these problems. Since the uncertainty is endogenous in the project portfo-
lio management problem, the nonanticipativity is conditional on the investment level decisions in
each planning period. Constraints (21) capture this dependency by ensuring that a given pair of
scenarios will be distinguished when one or more of the uncertain variables that distinguish them
are revealed. The time of realization of the uncertainty is determined by the binary variables yk

it

and hk
it. Notice that (21) are defined as inequalities for each possible pair of technologies so that

if no distinguishing parameters are known, then the investment levels in the two technologies have
to be equal. In addition, assuming independence of the corresponding probability distributions,
any two scenarios that differ only in the realization of the final return values will have the same
investment policy, since all investment decisions are made before these realizations. Hence, the re-
turn levels do not play a role in the nonanticipativity requirements. Representation of endogenous
nonanticipativity in this compact way is distinct and more efficient than the existing models in the
literature, since it enables the use of scenario decomposition methods as well as some other solution
approaches proposed for classical multistage stochastic integer programming problems.

4 The Two-stage Stochastic Programming Model

Although the actual decision making process for the project portfolio optimization problem contains
multiple stages, a natural simplification is through a two stage approach, in which it is assumed
that a realization of the random variables becomes known after investment decisions are made for
the current period in the first stage. If x1 represents the first period decision variables and x2 is
the vector of variables for the second stage which contains the remaining T − 1 periods, then the
corresponding two stage stochastic program can be written as follows:

maxx1 E[G(x1, ξ)] (24)
s.t. Ax1 = b,x1 ∈ X1 (25)

where G(x1, ξ) is the optimal value of the second stage problem

maxx2 g(ω)Tx2 (26)
s.t. T (ω)x1 + W (ω)x2 = h(ω),x2 ∈ X2 (27)

In the above representation, the second stage problem (26)-(27) depends on the realization ω of
the random vector ξ, which determines the values of g, T,W and h.

This leads to the following two-stage stochastic integer programming formulation for the project
portfolio management problem:

Two-stage Project Portfolio Optimization Problem (2PPM):

max (4) (28)

(5), (7), (9), (10), (13), (20), (22) (29)∑
t′≤t

xk
it′ −

(
max{(θk

i + tfi), B1}
)

αk
it ≤ 0 ∀i ∈ N ,∀t ≤ T,∀k (30)

xk
it −Bt(αk

it − βk
i,t+∆i−1 − γk

i2) ≤ 0 ∀i ∈ N ,∀t ≤ T,∀k (31)
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τk
it − τk

i,t−1 + xk
it − fi(αk

it − βk
i,t+∆i−1 − γk

i2) ≥ 0 ∀i ∈ N ,∀t ≤ T,∀k (32)

xk
it − fi(αk

it − βk
i,t+∆i−1 − γk

i2) ≥ 0 ∀i ∈ N ,∀t ≤ T,∀k (33)

βk
i,t+∆i

+ γk
i2 ≤ 1 ∀i ∈ N ,∀t ≤ T, t 6= 1,∀k (34)

αk
i1 − γk

i2 ≥ 0 ∀i ∈ N ,∀t ≤ T,∀k (35)

αk
it, β

k
it, γ

k
i2 ∈ {0, 1} ∀i ∈ N ,∀t,∀k (36)

In terms of formulation, the two-stage problem differs from the multistage model only in the
definition of the constraints that involve the termination variables, since early termination decisions
can only be made in the second stage. Similar to the MPPM , if the number of scenarios K is
not large, problem (29)-(36) can be solved using standard integer programming methods. However,
this is not possible for realistic instances of the project portfolio management problem, since they
constitute much larger problems. A difference between MPPM and 2PPM in terms of problem
size is that, the cardinality of the scenario set is smaller in 2PPM , since gradual revelation of
uncertainty is not modeled.

The same solution procedure we describe in Section 5.3 in a multistage setting can efficiently be
utilized for 2PPM . Except that the nonanticipativity is only restricted to the first stage, so the
Lagrangian is given as

L(β, δ, x, λ) = ĝN (β, δ) +
N∑

l=1

[∑
i∈N

(
N∑

l′=1

λl′
i xl

i1

N
− xl

i1λ
l
i

)]
(37)

which can be expressed as

L(β, δ, x) =
N∑

l=1

Ll(βl, δl, xl, ) (38)

where

Ll(βl, δl, xl) = ĝl
N (β, δ) +

∑
i∈N

(
N∑

l′=1

λl′
i xl

i1

N
− xl

i1λ
l
i

)
(39)

The corresponding Lagrangian dual problem for problem (29)-(36) is then

minλ{D(λ) = max{
∑N

l=1 Ll(βl, δl, xl, λl) : (29)− (36), except(20)}} (40)

Computational results and the efficiency of the solution procedure for 2PPM are discussed in
Section 6.

5 An Efficient Solution Procedure for MPPM and 2PPM

There are very few studies on stochastic programming problems with endogenous uncertainty. Jons-
braten et al. (1998) is the first to address such problems, in which an algorithmic procedure to solve
this type of two-stage problems is described. The proposed method includes a branch and bound
scheme to determine an optimal vector of decisions, each of which has a corresponding scenario tree.
Goel and Grossmann (2004b) model the operational planning of offshore gas field developments as
a multistage stochastic program with endogenous uncertainty. The stages of the problem contain
decisions to install production and well platforms, which result with the realization of the uncertain
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parameters for the fields in which installations are performed. The problem is formulated using
disjunctions, and an approximation algorithm based on decomposition and restriction of the search
space is described. A similar formulation is also given in Goel and Grossmann (2004a), in which
a Lagrangian duality based branch and bound procedure is proposed to solve the problem. Held
and Woodruff (2005) consider a network interdiction problem where the endogenous uncertainty is
in the structure of the network. Stages of the problem contains interdiction decisions followed by
shortest path calculations in the interdicted network. Several problem specific heuristic solution
methods are described and compared in the study. More recently, Goel and Grossmann (2006)
generalize the disjunctive programming formulation in Goel and Grossmann (2004b) to problems
containing both exogenous and endogenous certainty. The authors also discuss a set of theoretical
properties that leads to a reduction in the problem size. However, these results are only applicable
to small size problems, since they are valid only when all possible scenarios are included in the
problem. Viswanath et al. (2004) and Tarhan and Grossman (2006) consider somewhat different
versions of the above class of problems. Viswanath et al. (2004) address a two-stage network prob-
lem, where in the first stage survival probabilities of arcs can be changed by investment decisions.
Tarhan and Grossman (2006) consider gradual uncertainty revelation over time in the synthesis of
process networks.

None of the above studies contain efficient solution procedures to solve problems with endoge-
nous uncertainty, and almost all computational studies are performed on small size problems. The
general disjunctive programming formulation and the solution suggested by Goel and Grossmann
(2006) does not contain a direct decomposition structure, which is typically used in solving classical
stochastic programming problems. In this study, we aim to fill this gap by developing a formu-
lation scheme that is amenable to scenario decomposition, and is applicable to the general class
of such problems. In addition, effective solution procedures for the resulting subproblems are also
developed.

The sample average approximation (SAA) method is a Monte Carlo sampling technique that ap-
proximates a stochastic program by a smaller problem based on a random sample from the set of
possible scenarios. Let ξ1, ..., ξN be an i.i.d. random sample of N realizations of the random vector
ξ. Then the SAA problem for (1) is:

max
x∈X

{ĝN (x) =
1
N

N∑
l=1

G(x, ξl)} (41)

If v∗ and v̂N represent the optimal values of the “true” and SAA problems respectively, it is well
known that v̂N is a valid upper statistical bound for v∗ . Furthermore, Shapiro (2003) shows that
for multistage stochastic programming problems v̂N converges to v∗ with probability 1 as N →∞,
although no result is available on the rate of convergence. Hence, the choice of large values of N
will lead to better approximations of the true objective function. However, since the computational
complexity of the SAA problem increases exponentially with the value of N , it is more efficient to
select a smaller sample size N , and solve several SAA problems with i.i.d. samples.

Let M represent the number of SAA problems solved, and let v̂m
N and x̂m

N , m = 1, . . . ,M , denote
the optimal objective value and solution of the mth replication, respectively. Since generally only
the first stage investment decisions have practical importance for the project portfolio management
problem, we assume that x̂m

N represents these first stage decisions. Once a feasible solution x̂m
N ∈ X

is obtained by solving the SAA problem, the objective value g(x̂m
N ) can be approximated by the
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unbiased estimator

ĝN ′(x̂m
N ) =

1
N ′

N ′∑
l=1

G(x̂m
N , ξl) (42)

where N ′ is typically larger than N , since the computational effort required to estimate the objective
value for a given solution is generally less than that required to solve the SAA problem. On the
other hand, this phase may also be difficult for multistage problems, since it requires solving a
multistage problem with endogenous uncertainty where only first stage decisions are known. Hence,
any solution procedure must especially be efficient in calculating ĝN ′(x̂m

N ). One would also want
to estimate the quality of the solution x̂m

N . This can be done by computing an estimate of the
optimality gap v∗− g(x̂m

N ), where g(x̂m
N ) can be estimated by (42), and v∗ can be approximated by

v̄M
N =

1
M

M∑
m=1

v̂m
N (43)

The sampling procedure can be terminated once the optimality gap estimate is sufficiently small
or after performing all M replications, and the best solution among the SAA solutions can be
selected using an appropriate criterion. However, the variance of the optimality gap estimator is
also important, and must be taken into account in determining the quality of a solution. One
option is to add a multiple zα of the estimated standard deviation of the gap estimator to the
gap estimator, where zα = Φ−1(1 − α) and Φ(z) is the cumulative distribution function of the
standard normal distribution (Kleywegt et al. 2002). If the sample sizes are not large, then zα can
be replaced by tα,ν from the t-distribution, where ν is the corresponding degrees of freedom. Then,
an adjusted optimality gap estimator can be calculated by

v̄M
N − ĝN ′(x̂m

N ) + zα

(
σ̂2

v̄M
N

+ σ̂2
ĝN′ (x̂m

N )

)1/2
(44)

where σ̂2
v̄M

N
and σ̂2

ĝN′ (x̂m
N ) are the estimates of the variances for the estimators of v∗ and g(x̂m

N ),
respectively, and are calculated as

σ̂2
v̄M

N
=

1
(M − 1)M

M∑
m=1

(v̂m
N − v̄M

N )2 (45)

σ̂2
ĝN′ (x̂m

N ) =
1

(N ′ − 1)N ′

N ′∑
l=1

(
G(x̂m

N , ξl)− ĝN ′(x̂m
N )
)2

(46)

Effective implementation of the above sampling procedure requires that the SAA problems can be
solved efficiently for relatively large values of the sample size N . For a given set of scenarios, (4)-
(23) is a mixed integer programming problem and applications of standard solution methods fail
to produce a solution even when N is set to values less than 10. As an efficient solution procedure
for the SAA problem, we propose a Lagrangian relaxation and decomposition scheme coupled with
an efficient lower bounding heuristic, which we name as the feasible dual conversion algorithm.
The development of such a procedure is especially important, since for most multistage stochastic
problems, even finding a feasible solution to serve as a lower bound is difficult. We show in Section
5.2 that the minimum feasible dual conversion heuristic is an effective procedure in calculating tight
lower bounds for the technology portfolio management problem.
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5.1 A Lagrangian Relaxation and Decomposition Scheme

Model (4)-(23) is linked in scenarios through the nonanticipativity constraints (20) and (21). Let
ĝN (β, δ) represent the objective function (4) with K and pk replaced by N and 1/N , respectively.
Then by subjecting the nonanticipativity conditions to Lagrangian relaxation, we form the following
Lagrangian

L(β, δ, x, y, h, λ, µ) = ĝN (β, δ) +
N∑

l=1

∑
i∈N

λl
i

[
N∑

l′=1

1
N

xl′
i1 − xl

i1

]

+
1
N

N∑
l=1

∑
l′ 6=l

∑
i∈N

∑
1<t≤T

µll′
it

xl
it − xl′

it + Bt

∑
j∈Yll′

(
yl

jt + yl′
jt

)
+
∑

j∈Hll′

(
hl

jt + hl′
jt

) (47)

where λl
i and µll′

it are the Lagrange multipliers. Notice that the formulation of the nonanticipativity
constraints (20) and the multiplication of the relaxed constraints (21) by 1

N in the above Lagrangian
account for the scenario probabilities, and prevent the ill-conditioning in the Lagrangian dual as
discussed by Louveaux and Schultz (2003). A major advantage of the described formulation of the
nonanticipativity constraints is that when they are relaxed, the Lagrangian (47) can be decomposed
by scenarios for given dual vectors λ and µ , and can be expressed as

L(β, δ, x, y, h) =
N∑

l=1

Ll(βl, δl, xl, yl, hl) (48)

where

Ll(βl, δl, xl, yl, hl) = ĝl
N (β, δ) +

∑
i∈N

[
N∑

l′=1

λl′
i xl

i1

N
− xl

i1λ
l
i

]

+
1
N

∑
i∈N

∑
1<t≤T

[
xl

it

∑
l′ 6=l

(
µll′

it − µl′l
it

)
+ Bt

[∑
l′ 6=l

∑
j∈Yll′

yl
jt

(
µll′

it + µl′l
it

)

+
∑
l′ 6=l

∑
j∈Hll′

hl
jt

(
µll′

it + µl′l
it

)]]
(49)

The corresponding Lagrangian dual problem for problem (4)-(23) is then

minλ,µ{D(λ, µ) = max{
∑N

l=1 Ll(βl, δl, xl, yl, hl, λl, µl) : (5)− (19), (22), (23), µl ≥ 0}} (50)

Problem (50) is a nonsmooth convex minimization problem which can be solved by subgradient
optimization methods (Hiriart-Urruty and Lemarechal 1993). At each iteration of these methods,
the solution of D(λ, µ) is required to obtain a subgradient. Notice that D(λ, µ) is separable,
and reduces to the solving N problems of manageable size, each of which corresponds to a single

scenario. Components of the subgradient vector are then given by λl′
i xl

i1
N −xl

i1λ
l
i and xl

it

∑
l′ 6=l

(
µll′

it −

µl′l
it

)
+ Bt

[∑
l′ 6=l

∑
j∈Yll′

yl
jt

(
µll′

it + µl′l
it

)
+
∑

l′ 6=l

∑
j∈Hll′

hl
jt

(
µll′

it + µl′l
it

)]
, where xl

i1, yl
it and hl

it are
the optimal solutions to the scenario subproblems.

For the project portfolio optimization problem, we propose a modified subgradient algorithm, in
which step sizes in updating the dual variables are determined according to a weighted combination
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of the subgradients from previous iterations. More specifically, a new step direction at iteration j
is determined by

Γ̂j = π0Γj + π1Γj−1 + π2Γj−2 + π3Γj−3 (51)

where Γ terms represent the subgradients and π terms are weights such that π0 +π1 +π2 +π3 = 1.
Individual π values can be selected according to an experimental analysis based on the problem
considered. Updates of the multipliers are then performed using the following combined dynamic
step size rule:

λj+1 = λj −max{φ

j
,
κ(L̄j − Lj)
||Γ̂j ||

}Γ̂j (52)

µj+1 = max{0, µj −max{φ

j
,
κ(L̄j − Lj)
||Γ̂j ||

}Γ̂j} (53)

where φ and κ, κ < 2, are constants that can be modified during the algorithm. Above rule, which
has been verified through computational studies, ensures that initial step sizes are large enough
to prevent early convergence to a non-optimal solution. The implementation of the overall solu-
tion algorithm includes frequent lower bound calculations during the iterations of the subgradient
method, and the convergence rate of the subgradient algorithm is especially important from an
overall computational perspective. Hence, the stepsizes are determined as efficiently as possible
to improve the convergence rate of the algorithm. Despite the large size of the dual vector for
realistic instances of the problem, computational studies have shown that the convergence of the
subgradient algorithm is relatively fast. Results of the tested models are discussed in Section 6.

It is well known that, due to the integrality requirements, the optimal solution of the Lagrangian
dual gives an upper bound for the objective value of (4)-(23), which is at least as tight as the bound
obtained from the LP relaxation of the problem. Furthermore, any Lagrangian dual solution is an
upperbound for the original problem. However, a major difficulty in solving multistage stochastic
programming problems is to determine good feasible solutions for tight lower bounds. Clearly,
except in rare cases, the solutions of the Lagrangian dual will not satisfy the nonanticipativity
constraints.

We present a heuristic procedure that uses the Lagrangian dual solutions in subgradient iterations
to search for a feasible solution to the primal problem, which provides a lower bound for the optimal
objective value. Given a Lagrangian dual solution, the method looks for a primal solution with
minimum deviation from the dual solution. The search, which has produced very tight bounds
in the computational studies described in Section 6, is implemented using integer programming
models of manageable size. To ease the computational difficulty, the procedure is implemented
gradually using subsets of scenarios, which are determined by the variable values and the objective
value contributions of the scenarios in the dual solution. This procedure, which can also be applied
as a bounding procedure in similar stochastic programming problems, is described in detail below.

5.2 The Feasible Dual Conversion Algorithm

The objective function for the project portfolio optimization problem is defined by the values of
the binary variables βit, which represent the periods that the return realizations begin. Hence, the
corresponding values in a given Lagrangian dual solution describe some infeasible investment policy
in which nonanticipativity constraints are not enforced but are only penalized. Clearly, the optimal
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objective value of the primal problem is expected to be as close as possible or comparable to that
of this infeasible policy. Although, due to the combinatorial nature of the problem, the optimal
investment policy in the presence of nonanticipativity can be significantly different than the policy
suggested by the given dual solution, one can obtain a “good” investment policy by converting
the dual solution into a feasible solution by a minimal change in the βit values in the Lagrangian
dual solution. We present below an algorithm to achieve this, as well as a bound on the quality
of the solution obtained through the algorithm. The feasible dual conversion algorithm performs
such conversions in a systematic way that ensures the quality of the resulting solution as well as
computational efficiency.

Algorithm 1 (Feasible Dual Conversion). The steps of the algorithm are as follows:

Step 1. Initialization : Let βj represent the vector of corresponding values in a solution to the
Lagrangian dual problem (50) at iteration j of the subgradient algorithm for dual variables λj and
µj. Let βl

it
, ĝ

N
, Ll be the lowerbounds on βl

it, ĝN and Ll for scenario l. Choose a scenario subset
size S. Set βl

it
= 0 for all i, t, l, S = ∅, S′ = ∅, N = {l1, l2, . . . , lN}.

Step 2. Scenario subset selection : Rank all s ∈ N according to scenario objectives Lj
s, and form

subset S by selecting the first S scenarios among the ranked scenarios in N. Let S′ = S′ ∪ S and
N = N\S.

Step 3. Variable fixing : For each s ∈ S, determine period tso in which s becomes distinguishable
from all other scenarios according to scenario solutions βs

it, i.e.

tso = min
t
{t|min

s′ 6=s
{
∑

j∈Yss′

(βs
j,t+∆j

+ βs′
j,t+∆j

) +
∑

j∈Hss′

(βs
j,t+∆j

+ βs′
j,t+∆j

)} ≥ 1} (54)

For each i ∈ N such that βs
i,t+∆i

= 1, and t ≤ tso; if βs
i,t+∆i

− βs
i,t+∆i−1 = 1, then set βs

i,t+∆i
= 1.

Step 4. Feasibility determination: Check feasibility of (4)-(23) with the lower bounds on βs
it for

the scenario set S′. If feasible, let β̇s
it represent the corresponding values in this solution, and fix

βs
it = β̇s

it. If N 6= ∅, go to Step 2.

Step 5. Minimum dual conversion : If (4)-(23) is infeasible, determine the minimum number of
relaxations ro required on βs

it
= 1 for s ∈ S to obtain a feasible solution. Find the best possible

feasible solution that can be achieved by relaxing at most ro of the bounds βs
it
. Fix βs

it = β̇s
it. If

N 6= ∅, go to Step 2.

Step 6. Bound calculation : Let ẋ and ġN represent the final solution vector and objective function
value. If ġN > ĝ

N
, set ĝ

N
= ġN . For each scenario l, calculate L̇l(ẋ, λj+1, µj+1). If L̇l > Lj+1

l , set
Lj+1

l = L̇l.

After the initialization of the algorithm in Step 1 according to a Lagrangian dual solution obtained
in a subgradient iteration, Step 2 identifies the scenarios with the maximum possible contribution
to the total expected return. In Step 3, projects that determine nonanticipativity relationships and
that are also likely to deviate from the Lagrangian solution are identified. The βit variables for
these projects are fixed so that they are completed on or before the time suggested by the ideal
policy from the dual solution. Almost in all cases, this will lead to an infeasible solution, which
is checked in Step 4. Then, a conversion procedure is implemented in Step 5. In this phase, first

17



the minimum number of relaxations on the fixed βit variables required to obtain a feasible solution
is determined by solving an integer programming problem, which is assumed to be easily solvable
for scenario subset size S. Note that such a feasible solution always exists. Another option is to
minimize a weighted sum of the relaxations, where the weights are determined by the contribution
of each technology into the overall objective function. Then, given this minimum requirement for
feasibility, an optimization is performed to determine the best possible solution by performing at
most that many relaxations on fixed βit variables. Again, it is assumed that such an optimization
can be performed efficiently for S scenarios. The procedure is repeated N

S times, which results with
a feasible solution for the primal problem. In Step 6, bounds on the objective values are updated to
simplify the solution process in later iterations. Indeed, in the overall implementation, a history of
all such solutions are maintained, and used to determine the best possible lowerbound on scenario
subproblems at each iteration. Despite the additional memory requirement, it has been observed
that this significantly reduces the solution times for the scenario subproblems.

One may think that a better approach would be such that all βit values in the Lagrangian dual
solution are fixed in Step 3. However, this may significantly increase the computational complexity
of the optimization problems solved in Step 5. Also, by minimizing the number of required relax-
ations, Step 6 minimizes the computational difficulty of the subsequent optimization problem, and
the deviation from the dual solution is kept minimal with respect to technologies with the highest
return levels. The following propositions define a bound on the quality of the solution produced by
the feasible dual conversion algorithm, which translates to an upper bound on the duality gap.

Proposition 2. Let is represent a project i in scenario s, and let Iβ be the set containing all is

such that βs
it = 1 for some t. For a given set S of scenarios, group is according to the order of

completion in the dual scenario solutions, i.e. projects completed first in each scenario represent a
group, as well as those completed second, third, etc. In case of ties, assign groups arbitrarily. Let
Rn, n ≤ |N |, represent the cardinality of the largest compatibility set in group n, where projects is

and js′
are defined to be in the same compatibility set if βs

i,t+∆i
= βs′

j,t+∆j
= 1, βs

i,t+∆i
= 1 does

not imply βs′
j,t+∆j

= 0 or vice versa, and if they are compatible with the projects in the maximum
cardinality compatibility set in group n−1. Then, for any application of the feasible dual conversion
algorithm on S,

ro ≤ |Iβ | −
∑

n≤|N|

Rn

Proof. Proof Clearly, an upper bound on ro is |Iβ |. Note that, to obtain feasibility, a relaxation of
the lower bound on βs

it or βs′
jt is required if is and js′

are not compatible. Hence, required number
of relaxations for each group will be minimum if βs

it is set to 1 for all members of the maximum
cardinality compatibility set, and the variables corresponding to the remaining projects in the group
are relaxed. By the definition of compatibility, a feasible solution can always be obtained by fixing∑

n≤|N| R
n of the βs

it variables, where is ∈ Iβ , at their lowerbounds. Hence an upper bound on the

number of relaxations required for feasibility is |Iβ| −
∑

n≤|N|

Rn.

The above bound on the number of relaxations is easy to calculate, since the size of the groups
formed in the bound calculation procedure is in the order of S. The procedure requires the identi-
fication of the maximum cardinality compatibility set, which is equivalent to solving the NP-hard
maximum clique problem on a compatibility graph. As noted, the size of the groups enable easy
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determination of this set. On the other hand, less tight bounds can be obtained by using bounds
known for the maximum clique problem and selecting a clique arbitrarily to fix some of the vari-
ables. Proposition 3 uses the bound on ro to develop a bound for the quality of the solutions
obtained by the feasible dual conversion algorithm.

Proposition 3. Consider a ranking of projects is ∈ Iβ, i.e. < is(1), i
s
(2), · · · > such that zis

(1)
≥ zis

(2)
≥

. . . , where zs
i is the contribution of project i to the scenario objective in the dual solution. Define

rU
o = |Iβ| −

∑
n≤|N| R

n, and let tso′ represent the period that scenario s becomes distinguishable
from all other scenarios according to a modified dual solution obtained by assuming no investment
is made in project is prior to period t + 1, if βs

it = 1 and is ∈ {is(1), i
s
(2), . . . , i

s
(rU

o )
} or βs

it = 0 .
Furthermore, assume that zs

c represents the return in scenario s from the optimum single-scenario
investment schedule over periods tso′ , . . . , T for all projects that are not completed by tso′ according
to the modified dual solution. For the optimum partial schedule calculations, assume that for is

such that βs
it = 0 for all t, θi = τi,ts

o′ , if τi,ts
o′ < θi in the modified dual solution and all xs

it satisfy
modified nonanticipativity for t ≤ tso′. If F ∗

N (x) is the optimal objective function value for the SAA
problem with N scenarios, and FN (ẋ) is the objective value of a solution generated by the feasible
dual conversion algorithm,then

F ∗
N (x)− FN (ẋ) ≤

N/S∑
k=1

∑
s∈Sk

{−zs
c +

is
(rU

o )∑
i=is

(1)

zs
i }

Proof. Proof Consider the first iteration of the feasible dual conversion algorithm, and assume
that S scenarios with highest scenario objectives are selected. Notice that an upperbound for
the contribution of these scenarios in the optimal solution is given by

∑S
s=1 Ls(x, λ, µ). Let ∆Z

represent the total change in the objective value of the feasible solution for scenario s compared

with the dual solution. Clearly, ∆Z ≤
∑is

(ro)

i=is
(1)

zs
i , since a feasible solution always exists with

ro relaxations on the bounds βs
it = 1. Without loss of generality, assume that these relaxations

correspond to is with the highest contributions to the objective function. We show that the modified
dual solution described above is feasible. Suppose this solution is not feasible, which implies that
the corresponding investment schedule does not satisfy the modified nonanticipativity requirements.
Since the modified dual solution consists only of projects with βs

it = 1, any change in the schedule
would require a relaxation in these bounds. This contradicts with the condition that a feasible
solution exists with ro relaxations on the bounds. Furthermore, any partial investment schedule for
periods after tso′ would not violate feasibility, since there is no nonanticipativity requirements after
period tso′ . Hence, it is possible to improve this feasible solution by reoptimizing the allocations in
each scenario s for periods after tso′ . This will lead to an improvement of

∑
s zs

c in the objective

value, implying that ∆Z ≤
∑is

(ro)

i=is
(1)

zs
i −
∑

s zs
c . It follows from Proposition 2 that the bound can be

expressed similarly by replacing ro with rU
o . Since the algorithm performs N/S iterations to obtain

a feasible solution, the total difference is the sum over all iterations, and the result follows.

Calculation of the above bound requires the solution of small optimization problems for each sce-
nario. These problems include only a subset of the projects in the portfolio, and contain periods
after tso′ . Noting that these small problems can be solved significantly fast, the difficulty of bound
calculations is only dependent on the number of scenarios considered.
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Using the bounding schemes discussed, a branch and bound algorithm with branching on the
nonanticipativity constraints that are not satisfied in the solution of the Lagrangian dual can be
implemented to close the duality gap. In the case of the project portfolio management problem, the
nonanticipativity constraints are on the continuous variables xk

it. Hence a branching rule could use
the average investment in the scenario solutions of the dual problem, or the most frequent occurrence
of xk

it values to branch on. However, the branch and bound scheme is usually computationally
efficient only for very small scale problems. On the other hand, duality gaps are not significantly
high for the approximate solutions produced by the feasible dual conversion algorithm for larger
models as noted in Tables 3 and 4. Thus, in most instances, it will suffice to obtain approximate
solutions through the feasible dual conversion algorithm, and use them as the solutions to the SAA
problems. In parallel with this analysis, computational studies in Section 6 have been implemented
without the branch and bound step for efficiency purposes.

5.3 Solution Algorithm Overview

The overall procedure to solve the project portfolio optimization problem is summarized below,
which is also shown in Figure 4.

Algorithm 2 (Solution Algorithm for MPPM and 2PPM). The general solution algorithm can
be summarized as follows:

Step 1. Obtain N samples from the set of scenarios, and form the SAA problem with these scenarios.

Step 2. Perform Lagrangian relaxation on the SAA problem, decomposing the problem into indi-
vidual scenario subproblems.

Step 3. Use subgradient algorithm with the proposed step size measure to obtain an upper bound for
the SAA problem.

3a. If computationally feasible, solve the LP relaxation of (4)-(23), and set the corresponding
dual values as the initial Lagrangian multipliers. Use a rounding heuristic to obtain an initial
lowerbound on the problem, i.e if βk

it ≥ 0.5 and βk
it′ ≥ 0.5 for all t′ > t in the LP relaxation

solution, then set β̇k
it = 1, else set β̇k

it = 0. Then use the feasible dual conversion algorithm.

3b. At each iteration j of the algorithm, determine a lowerbound for the scenario subproblems
by calculating L̇l(ẋl, λj+1, µj+1), and selecting the minimum.

3c. Based on an improvement threshold for the dual solution or at every fo iterations, apply
the feasible dual conversion algorithm, to obtain a lowerbound for the SAA problem, as well as for
the scenario subproblems.

3d. Use the best lowerbounds for the scenario subproblems as the starting solution for the
subproblems at iteration j + 1.

4. Calculate the duality gap upon convergence of the subgradient algorithm. If the gap is less than
or equal to ε, go to step 5. Else, if computationally feasible, use branch and bound to close the
duality gap, by branching on the nonanticipativity conditions.

5. Repeat Steps 1-4 M times. Each solution is a candidate solution for the true problem.
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Figure 4: Solution algorithm for MPPM and 2PPM
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6. For some or all of the candidate solutions, perform N ′ replications by fixing the values of the
first stage variables according to the solution, and repeating steps 1 − 4 with these fixed values to
estimate the objective value of the candidate solutions.

7. Select a solution as the best solution using an appropriate criterion.

For the lower bounding procedure, both the LP relaxation based and dual solution based heuris-
tics can be applied and the maximum objective value can be selected as the better lowerbound.
Computational studies have shown that the LP relaxation based heuristic can often produce good
solutions.

6 Computational Results for MPPM and 2PPM

Computational tests for the developed solution procedures were conducted on two sets of project
portfolio data under different algorithmic configurations. The data sets consist of five and ten
technology projects and are represented as 5T and 10T in the results tables. The stochastic data
for the ten project instance is shown in Table 1. The probability distributions for the uncertain
parameters, i.e. required investment levels, initial return estimates and realized return levels, were
assumed to be discrete with low and high levels. Corresponding probabilities for each case are
also listed in Table 1. The probability distributions for the uncertain parameters, i.e. required
investment levels, initial return estimates and realized return levels, were assumed to be discrete
with low and high levels. Although the dependence of the probability distributions of return
estimates and realizations are modeled to reflect a gradual resolution of uncertainty, all other
stochastic parameters are assumed to be independent. Joint return effects are defined according
to the description in Section 2. Several implementations with varying sample sizes and number
of replications are displayed in Tables 3 and 4. The number preceding the letter S in the table
notation represents the number of samples, while the number preceding the letter R is the number
of replications.

Computations were performed on a PC with an Intel Core 2 Duo 2.0 GHz processor and 2GB
of internal memory, using ILOG CPLEX Version 10.0. Although the computational studies were
conducted on a single computer, the proposed solution procedure can easily be parallelized by
solving the scenario subproblems on multiple machines to improve the solution times significantly.

The first two columns after the problem size information in Tables 3 and 4 display the time in
seconds per replication of the SAA implementation and the expected value estimation for a given
solution, respectively. The next column is the average duality gap, which is an average of the gap
over all replications. The adjusted optimality gap estimate is given in the last column, and is cal-
culated according to (44), based on the best solution obtained using the developed procedure. The
sample size N ′ to estimate the corresponding objective value of a candidate solution was selected as
100 and 50 for 5T and 10T implementations. As it is shown in these results tables, the calculations
of the objective values when the first stage decisions are fixed can be performed significantly faster
then the solution of the SAA problem. Table 2 displays the first stage solutions for all tested con-
figurations of the SAA algorithm. In most cases, different configurations return the same solution,
based on the methodology used to select the best solution among the candidate solutions. Fur-
thermore, for these instances, the two stage and multi-stage solutions are not significantly different
than each other.
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Overall, the computational results show that the developed procedure is effective and efficient in
solving the project portfolio optimization problem, which is a difficult multistage stochastic program
with endogenous uncertainty. Even without the implementation of a branch and bound procedure
to close the duality gap, obtained lower bounds are very close to the Lagrangian upper bounds.
As expected, the duality gap is less in instances with small sample sizes, while the optimality gap
estimate is very low for large sample sizes. For the latter case, the variances are much lower and
convergence of v̄M

N and ĝN ′(x̂m
N ) occur significantly faster, in the expense of slower computation

times. The selection of the best solution out of several SAA solutions was done in two steps. In
the first step, candidate solutions were identified based on the frequency of occurrences in the SAA
solutions. Then the expected returns were estimated for these candidate solutions as described
above, and the solution with the highest expected return estimate was selected. In Figure 5, we
show the different levels of variance and convergence in this process on the 5T instances for both
MPPM and 2PPM . The horizontal line in each plot represents the value of the estimate v̄M

N for
the corresponding algorithmic configuration. The effects of large sample sizes are evident in these
plots, as it can be seen that convergence to the corresponding objective value is much faster in
these cases. In addition, when compared with the two-stage model, convergence is better in the
multi-stage case, mainly due the flexibility in a multistage model in rebalancing the portfolio in
later stages. Hence, the results for different scenarios do not vary significantly.

7 Conclusions and Future Work

Project portfolio optimization problem has not been studied at the detailed level considered in
this study before. It was also noted that the problem has a unique structure with endogenous
uncertainty of the stochastic parameters, and development of a solution methodology would also
contribute to the general class of such problems. We have presented a detailed and comprehensive
description of the problem, the solution characteristics, and an efficient solution approach that can
be used to solve this large-scale problem.

Implementation of the proposed models in project portfolio selection by organizations will lead to
significant increases in returns, as all relevant inputs and uncertainty are captured in the models, as
opposed to existing project portfolio selection tools. The developed methodology is in the process
of being used by the Federal Aviation Administration (FAA) in determining resource allocations
to a portfolio of aviation modernization technologies. A significant contribution of the developed
models is that they include a common but less studied characteristic of endogenous uncertainty.
Problems of this type are usually difficult to model, since the nonanticipativity conditions require
comparisons of scenario pairs. We present a compact decomposable structure which can be exploited
by methods that are commonly used in the solution of classical stochastic programming problems.
It must be noted that even if the endogenous uncertainty were to be ignored, the resulting problem
would be a multistage stochastic integer program with several stages for which no general solution
procedures are available. Hence, to handle the difficulty, an effective lower bounding algorithm
and performance bounds have been developed as a part of the overall solution procedure. The
algorithm has been tested with promising results, and it is believed that such a procedure can be
implemented in several other similar problems. Additional extensions of the study are possible in
several areas. Integration of risk is an important part of the technology portfolio selection, since
most practical decisions are made while considering risks associated with the investment decisions.
This can be analyzed through the introduction of other objective functions capturing risk, such
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as value-at-risk models. One other extension includes capturing the effects of dependencies in
probability distributions on the investment decisions.
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Figure 5: Estimation of expected value of the objective function for candidate solutions using
samples sizes of N ′ = 100
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