
Identifying the edges of a convex hull

Francisco J. López1 and Art M. Duval2

1. francisco.lopez@maconstate.edu. School of Business

100 College Station Dr, Macon, GA 31206

2. artduval@math.utep.edu. Department of Mathematical Sciences

University of Texas at El Paso, El Paso TX 79968

Abstract. We present three new algorithms for identifying all one-dimension faces of convex hulls.

They emerge from theoretical and geometric characteristics of the hulls. The computational efficiency of

these procedures is compared to the best currently available algorithm (to the best knowledge of the authors)

that solves the same problem. Two of the methods are efficient, and can be further accelerated with speed-up

techniques, as we verified on one of them.

Key words. computational geometry, computing methodologies and applications, con-

vex hulls, polyhedra

1. Introduction.

An important research field involving convex hulls (or other types of hulls) refers to the

identification of their faces; e.g., Wets and Witzgall (1967); Dulá, Helgason, and Venugopal

(1998); Erickson (1999), or Ottmann, Schuierer, and Soundaralakshimi (2001). This problem

is not to be confused with that of identifying the facets and faces of convex polyhedral cones

or polytopes (convex cones or convex polytopes) that result from systems of equalities and/or

inequalities, and which are closely related (via duality or polarity) to the problem of interest

in this article. In other words, we are finding the edges of polytopes defined by their vertices,

not by their facets. Research on convex cones or convex polytopes is abundant, but this area

is out of the scope of this work. For more information on the relationships between hulls and

convex polyhedra see Wets and Witzgall (1967); Bremner, Fukuda, and Marzetta (1998);

and Fukuda (2004, 2005).

1

This article introduces three new approaches that find all 1-faces (the edges) of the convex

hull of a set of points. A k-face of a hull is a “face of dimension k” (Wets and Witzgall (1967)).

2. Definitions and assumptions.

Let P = {p1, p2, . . . , pn} be a set of n points in m-dimensional space. The convex hull of

P, con(P), is the set of all convex combinations of the points in P: con(P) = {z ∈ �m|z =
∑n

i=1 piλi; 0 ≤ λi ∈ �; and
∑n

i=1 λi = 1} (Rockafellar (1970)). For the purpose of this

work, points and vectors are synonyms. We assume there are no duplicated points in P and

each point is an extreme point of con(P). It is possible to identify the extreme points of a

convex hull with the traditional approach or with more efficient algorithms available in the

literature; e.g., Dulá and López (2006).

The symbols β, ε, and γ are scalars, while π, x, y, u, and uij are vectors where π is in

�m and x, y, u = (1, 1, . . . , 1)T , and uij are in �n (uij is a vector with ones, like u, except

that the i-th and j-th coordinates are zeros), with 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i �= j. The

i-th coordinate of point π is denoted πi.

P is the m×n matrix with columns p1, p2, . . . , pn; i.e., P = [p1p2 . . . pn]. The two extreme

points at the end of an edge are “adjacent.” We employ Matrix A with dimension n× n in

our algorithms to indicate whether pi and pj are adjacent. If i < j, the element aij in the

i-th row and j-th column of A equals 1 if pi and pj are adjacent, and equals 0 otherwise.

H(π, β), is a hyperplane with defining vector (normal) π and level value β. A supporting

hyperplane of con(P) is a hyperplane H(π, β) such that πT pi ≤ β for all pi ∈ P and πT pj = β

for at least one point pj ∈ P. This means that H(π, β) touches con(P) at least at one point

and keeps the entire hull in one of the closed halfspaces that it defines.

Points pi ∈ P and pj ∈ P are adjacent if and only if there is a supporting hyperplane of

con(P), H(π̃, β̃), such that π̃T pi = π̃T pj = β̃, and π̃T pk < β̃ for every point pk ∈ P different

from pi and pj . This hyperplane contains pi and pj but does not contain any other point

from P. Figure 1 illustrates these concepts.

3. Background.

Most of the research on faces/facets of hulls focuses on identifying their extreme points;

e.g., Rosen, Xue, and Phillips (1992); Dulá and Helgason (1996); or Dulá, Helgason, and

Venugopal (1998). Work on identifying higher dimensional faces is mostly about finding

the facets (top-dimensional faces), or on finding all the higher dimensional faces; see Seidel

2

()

π, β is a supporting hyperplane. It only
contains and the edge between them.
The rest of the hull is to one of its sides.

()

π, β πHyperplane

p1

p2

x1

x2

x3

H

and are adjacent.p1 p2

and p1 p2
H ˜

˜

˜

˜ ˜

Figure 1: A convex hull and example of an edge and a supporting hyperplane.

(1997). An exception is an article by Wets and Witzgall (1967), who provide two algorithms

for positive hulls that can be used to find the edges of convex hulls. Both procedures require

transforming the convex hull into a positive hull by adding a new dimension and assigning

to each point the same constant, different from zero, as the new coordinate (see Figure 2).

Then, the positive hull of the points (vectors) in the expanded dimension is employed because

there is a one-to-one relation between the faces of the two hulls: any k-face of the positive

hull corresponds to one and only one (k−1)-face of the convex hull and vice versa. Extreme

rays of the positive hull correspond to extreme points of the convex hull and 2-faces of the

positive hull correspond to edges of the convex hull.

The algorithms by Wets and Witzgall (1967) are useful to find k-faces of positive hulls

in general, 1 ≤ k ≤ m− 1, not only 2-faces. Their first algorithm is based on the idea that,

without loss of generality, the points p̂1, . . . , p̂k in P̂ = {p̂1, . . . , p̂n} (hats indicate points in

the expanded dimension �m+1) subdetermine a face of the positive hull of P̂ if and only if

the linear hull of {p̂1, . . . , p̂k} is the lineality space of the positive hull of P̂ ∪{−p̂1, . . . ,−p̂k}.
The second algorithm characterizes the faces of a convex hull in terms of sign patterns of

matrices representing the hull. Wets and Witzgall (1967) explain that the latter is expected

to be computationally more efficient since it does not have to start from scratch for each

decision, but they also warn of the risk of cycling in the presence of degeneracies if degeneracy

3

x1

x2

x1

x3

x2

Figure 2: Transforming a convex hull in �2 into a positive hull in �3.

provisions and zero tolerances are not chosen and handled correctly.

4. Three new algorithms for finding the edges of a convex hull.

4.1. The “Repelling-Support” idea. Recall that the definition of adjacency states

that two points in P are adjacent (or determine an edge) if and only if there is a supporting

hyperplane of con(P) that contains both points and keeps (strictly) all other points of P
to one of its sides. This is depicted in Figure 1. The idea is to use a linear program (LP),

which we label LP1(ij), to try to find such a supporting hyperplane as follows.

max ε
S.T. πT pk − β = 0; if k = i or if k = j,

πT pk − β + ε ≤ 0; if k �= i, j,
ε ≤ 1,

π, β, ε, free in sign.

The corresponding dual, named D1(ij), is:

min γ
S.T. Py = 0,

−uT y = 0,
uijT

y + γ = 1,

yi, yj, free in sign; yk ≥ 0 for all k �= i, j; γ ≥ 0.

4

p2

p1

-p1 p2π =12

Figure 3: Projection of a set of points onto a selected hyperplane.

4.1.1. The “Repelling-Support” algorithm. Let LP1(i, j), i �= j, be the “Repelling-

Support” LP formulation and D1(i, j) be its dual LP, and let a star, “*”, indicate optimality.

“Repelling-Support” pseudo-code for adjacency

Input: m, n, P ; Output: A.

Initialization: A = 0.

For i = 1, to n− 1,

For j = i + 1, to n,

Solve D1(i, j),

aij = γ∗,

Next j,

Next i,

STOP. The matrix A is such that aij = 1, i < j, if and only if pi and pj are adjacent.

Solving an LP with “few” rows and “many” columns is faster than solving one with

“many” rows and “few” columns. Since n is usually significantly greater than m, we solve

D1(i, j) instead of LP1(i, j).

4.2. The “projection” idea. This approach projects the points in P onto hyperplanes

properly selected in order to identify the edges of con(P). An example of such projection

appears in Figure 3, where all projections occur following the direction π12 = p1 − p2.

Let πij, i �= j, be the vector pi − pj and recall H(πij , β) is the hyperplane defined by πij

with level value β. For any point p ∈ �m, let p be the projection of point p on hyperplane

5

H(πij, 0) : p = p− λpπ
ij, where

λp =
πijT

p

πijT πij
∈ �.

We will use the notational shortcuts

pi := pi and P := {p : p ∈ P}.
Since pi = pj, it follows that pi is extreme in the projected hull if and only if pj is also

extreme. To determine if pi is an extreme point of con(P), it suffices to solve a phase I LP

(Wets and Witzgall (1967)). We call our formulation LP2(i, j) and it is as follows.

max 0
S.T. Px = pi,

x1 + . . . + xn = 1,
xi = xj = 0; x ≥ 0,

where P is the matrix whose columns are the points in P .

4.2.1. The “Projection” algorithm. Let LP2(i, j) be the LP that determines whether

pi is extreme when projections occur onto H(πij, 0).

“Projection” pseudo-code for adjacency

Input: m, n, P ; Output: A.

Initialization: A = 0.

For i = 1, to n− 1,

For j = i + 1, to n,

P = ∅; P = 0,

πij = pi − pj,

For k = 1, to n,

pk = pk − (πijT
pk

πijT πij
)πij,

P = P ∪ {pk},
Next k,

P ← P,

Solve LP2(i, j),

If LP2(i, j) is not feasible, then aij = 1,

Else, continue

End if,

Next j,

Next i

STOP. The matrix A is such that aij = 1, i < j, if and only if pi and pj are adjacent.

6

˜
pi

˜
pi

(a) (b)

Figure 4: Origin translation, resulting positive hull, and intersection of hyperplane with hull.

4.3. The “Conical or Truncation” idea. Two ideas to find the edges of a convex

hull emerge from translating the origin to a point in P. Figure 4(a) illustrates how the

extreme vectors of the positive hull after translating the origin to pĩ correspond to edges of

the convex hull. Also, if a hyperplane cuts off pĩ from all the remaining points, Figure 4(b),

the intersection of the hyperplane with the convex hull is another convex hull whose extreme

points correspond to edges of the whole convex hull. An approach based on the first idea

(the “conical” approach) is both easier to implement and computationally more efficient.

For the purpose of our algorithm it suffices to iteratively check the feasibility of the

following LP (phase I LP), which we call LP3(ij).

max 0
S.T. P ix = b,

xi = xj = 0; x ≥ 0,

where b = pj − pi, i �= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, and P i is the matrix which columns are the

vectors in P i = {p1 − pi, p2 − pi, . . . , pn − pi} (the origin is translated to pi).

4.3.1. The “Conical” algorithm.

“Conical” pseudo-code for adjacency

Input: m, n, P ; Output: A.

Initialization: A = 0.

For i = 1, to n− 1,

Initialization: P i = ∅; P i = 0,

For k = 1, to n,

P i = P i ∪ {pk − pi},
Next k,

7

P i ← P i,

For j = i + 1, to n,

b = pj − pi,

Solve LP3(i, j),

If LP3(i, j) is not feasible, then aij = 1,

Else, continue,

End if,

Next j,

Next i,

STOP. The matrix A is such that aij = 1, i < j, if and only pi and pj are adjacent.

Note on speeding up the algorithms. It is important to be aware of techniques that ac-

celerate algorithms, like preprocessors, LP warm-starts, Restricted Basis Entry (RBE) (Ali

(1993)), the algorithm by Dulá and López (2006) in the case of the Conical algorithm,

and more. For illustration purposes we accelerated the Conical approach with algorithm

“PolyFrame”, by Dulá and López (2006). We implemented PolyFrame directly, but the

algorithms can be further accelerated with preprocessors and other techniques. The im-

pact is significant CPU times reductions. In the remainder of this work “Naive-Conical”

and “Frame-Conical” refer to the naive (or “pure”) and the PolyFrame implementations,

respectively.

5. Computational results and Conclusions.

Figures 5 and 6 illustrate the behavior of CPU times of the algorithms, including the

Frame-Conical approach, depending on cardinality and dimension changes, respectively.

To summarize, this article describes three algorithms that identify the edges (or 1-

dimension faces) of finitely generated convex hulls. We provide LP formulations that detect

important characteristics of the corresponding convex hulls. We test the algorithms com-

putationally to verify their effectiveness and to compare them to an algorithm proposed by

Wets and Witzgall (1967) that solves the same problem. The latter is, to the best of the

authors’ knowledge, the best currently available algorithm for this purpose, but we, as Wets

and Witzgall (1967), also experienced problems with this approach since we did not imple-

ment special handling of degeneracy or zero tolerances. The missing data in our figures are

due to the impossibility of recording the corresponding times.

8

200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

3000

3500
Dimension 4

C
p
u

s
e
c
o
n
d
s

Repelling-Support

Wets and Witzgall

Frame-Conical

Projection

200 400 600 800 1000 1200 1400 1600
0

1000

2000

3000

4000

5000
Dimension 6

C
p
u

s
e
c
o
n
d
s

Repelling-Support

Wets and Witzgall

Frame-Conical

Projection

200 400 600 800 1000120014001600
0

2000

4000

6000

8000

10000

12000
Dimension 10

C
p
u

s
e
c
o
n
d
s

Repelling-Support

Wets and Witzgall

Frame-Conical

Projection

200 400 600 800 1000120014001600
0

5000

10000

15000

20000
Dimension 12

C
p
u

s
e
c
o
n
d
s

Repelling-Support

Wets and Witzgall

Frame-Conical

Projection

Cardinality Cardinality

Cardinality Cardinality

Figure 5: Effect of cardinality on CPU times.

Two of the algorithms (the Projection and the Conical methods) emerge as the best

performers, especially for large problems. In the case of small problems (mainly in low

dimensions) the approach by Wets and Witzgall is the fastest, perhaps for the benefit of not

having to start from scratch each iteration. We also illustrate how to boost the performance

of the Conical approach with an algorithm by Dulá and López (2006). All three algorithms,

as well as the improved Conical approach, are subject to further improvements by using

preprocessors and accelerators.

9

4 6 8 10 12 14
0

20

40

60

80

100
Cardinality 200

C
p
u

s
e
c
o
n
d
s

Repelling-Support

Wets and Witzgall

Frame-Conical

Projection

4 6 8 10 12 14
0

100

200

300

400

500

600
Cardinality 400

C
p
u

s
e
c
o
n
d
s

Repelling-Support

Wets and Witzgall

Frame-Conical

Proyection

4 6 8 10 12 14
0

10000

20000

30000

40000
Cardinality 1400

C
p
u

s
e
c
o
n
d
s

Repelling-Support

Wets and Witzgall

Frame-Conical

Projection

4 6 8 10 12 14
0

10000

20000

30000

40000

50000
Cardinality 1600

C
p
u

s
e
c
o
n
d
s

Repelling-Support

Wets and Witzgall

Frame-Conical

Projection

Dimension Dimension

Dimension Dimension

Figure 6: Effect of dimension on CPU times.

References

I. Ali, Streamlined computation for data envelopment analysis, Europ. J. of Oper. Res., 64

(1993), pp. 61-67.

D. Bremner, K. Fukuda, and A. Marzetta, Primal-dual methods for vertex and facet

enumeration, Discrete Comput. Geom., 20 (1998), pp. 333-357.

J.H. Dulá and R.V. Helgason, A new procedure for identifying the frame of the convex

hull of a finite collection of points in multidimensional space, Europ. J. of Oper. Res.,

92 (1996), pp. 352-367.

J.H. Dulá, R.V. Helgason, and N. Venugopal, An algorithm for identifying the frame

of a pointed finite conical hull, INFORMS J. Comput., 10 (1998), pp 323-330.

J.H. Dulá and F.J. López, Algorithms for the frame of a finitely generated unbounded

polyhedron, INFORMS J. Comput., 18-1 (2006), pp 97-110.

J. Erickson, New lower bounds for convex hull problems in odd dimensions, SIAM J.

Comput., 28-4 (1999), pp. 1198-1214.

K. Fukuda, Frequently Asked Questions in Polyhedral Computation,
http://www.ifor.math.ethz.ch/˜fukuda/polyfaq/polyfaq.html, version June 18, 2004.

10

K. Fukuda, Introduction, cdd/cdd+ Reference Manual,
ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd/cddman/node2.html, version August 18,

2005.

T. Ottmann, S. Schuierer, and S. Soundaralakshimi, Enumerating extreme points

in higher dimension, Nordic J. on Comput., 8 (2001), pp 179-192.

R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey,

1970.

J.B. Rosen, G.L. Xue, and A.T. Phillips, Efficient computation of extreme points

of convex hulls in �d, in Advances in Optimization and Parallel Computing, P.M.

Pardalos, ed., North Holland, Amsterdam, The Netherlands, 1992, pp. 267-292.

R. Seidel, Convex hull computations, in Handbook of Discrete and Computational Geome-

try, J.E. Goodman and J. O’Rourke, eds., CRC Press, Boca Raton, Florida, 1997, pp.

361-375.

R.J.-B. Wets and C. Witzgall, Algorithms for frames and lineality spaces of cones,

J. of Res. National Bureau of Standards – B. Math. and Mathematical Physics 71B

(1967), pp. 1-7.

11

