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ABSTRACT

This paper studies the two-machine flowshop scheduling problem with anticipatory setup times

and an availability constraint imposed on only one of the machines where interrupted jobs can

resume their operations. We present a heuristic algorithm developed by Wang and Cheng to

minimize makespan and use simulation to estimate its actual error bound. Wang and Cheng

showed the worst-case error bounds are no larger than 2
3 but, did not consider the average

error bound.

1 INTRODUCTION

The problem of minimizing the makespan (the total completion time) of machine scheduling

problems with availability constraints,( i.e. where one or more machines are unavailable for

specified lengths of time, such as for routine maintenance), has attracted much research atten-

tion over the years. The two machine flowshop scheduling problem with availability contraints

was first studied by Lee [3] in 1997. Under the job resumable assumption, he proved that the

problem is NP hard even when an unavailability constraint is imposed on only one machine.

Lee developed two heuristics to solve the problem. The first heuristic solved the problem when

the unavailability constraint is imposed on the first machine and has a worst case error bound

of 1
2 while the second heuristic solved the problem when the unavailability constraint is im-

posed on the second machine and has a worst case error bound of 1
3 .

Definition 1 Suppose CH is the makespan of a machine scheduling problem obtained from

heuristic H and C★ is the optimal makespan. Then the error bound for heuristic H is CH−C★

C★ .

Also considering the resumable case, Chang and Wang [5] developed an improved heuristic

with a worst case error bound of 1
3 when the unavailability constraint is placed only on the
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first machine. Breit [1] presented an improved heuristic with a worst case error bound of 1
4

for the problem with an availability constraint only on the second machine. Chang and Wang

[2] considered a special case of the problem when availability constraints are placed on both

machines consecutively. The heuristic they developed had a worst case error bound of 2
3 .

In all the above mentioned flowshop scheduling models, setup times are not considered; that is,

setup times are assumed to be included in the processing times. However, in many industrial

settings, it is necessary to treat setup times as separated from processing times (for example

[4, 6]). The two machine flowshop scheduling problem with anticipatory setup times when an

availability contraint is imposed on one machine was studied by Wang and Chang [7]. They

present two heuristics with worst case error bounds no larger than 2
3 for solving the problem

when the availability constraint is imposed on machines 1 and 2 respectively.

The purpose of this paper is to estimate by simulation the actual error bounds of the algorithms

presented in [7]. In section 2, we introduce the notation and present the parallel machine

scheduling problem with the unavailable time on machine 1 and in section 3, we present the

algorithm from [7] for this case and fill in the details of the proofs in [7]. The algorithm and

proof for the case when the availability constraint is imposed on machine 2 is similar, thus

those are omitted. In section 5, we program both algorithms in JAVA and present estimates

of the actual error bounds using simulation.

2 PROBLEM STATEMENT AND NOTATION

Problem Statement: Given a two machine flowshop scheduling problem with job set up

times, the resumable assumption (a job or set up may be stopped and then resummed from

the stopping point), and a fixed interval of unavailability time on one of the machines, find the

permutation of the jobs that minimizes the makespan.

The following notation will be used throughout this paper:

∙ S = {J1, ..., Jn}: a set of n jobs;

∙ M1,M2 : machine 1 and machine 2;

∙ Δl = tl - sl :the length of the unavailable interval on Ml , where Ml is unavailable from

time sl to tl, 0 ≤ sl ≤ tl , l = 1, 2;

∙ s1i , s
2
i :setup times of Ji on M1 and M2 , respectively, where si > 0, si > 0;

∙ ai, bi :processing times of Ji on M1 and M2 , respectively, where ai > 0, bi > 0;

∙ �: = [J�(1),...,J�(n)]:a permutation schedule, where J�(i) is the ith job in � ;

∙ �★:an optimal schedule;

∙ CHx
:the makespan yielded by heuristic Hx;



∙ C★:the optimal makespan.

Example 1 Unavailability time on machine 1 with Δ1 = 5, s1 = 10, t1 = 15, n = 3. Let s11 =

3, a1 = 4, s12 = 5, a2 = 4,s13 = 4, a3 = 5, s21 = 2, b1 = 6, s22 = 4, b2 = 8, s23 = 2, b3 = 3, A schedule

�= [J1, J2, J3] is shown in Fig. 1.

M1

M2

Machine

Time

J1

J1

J2J1 J2 J2 J3 J3

J1 J2 J2 J3 J3

3         7        10          15   17      21        25            30

5   7                13          17     21                     29  31    34

Figure 1: A schedule for example 1 with the makespan = 34

3 ALGORITHM FOR THE UNAVAILABLE INTERVAL

ON M1

In this section we develop a heuristic by Wang and Cheng [7] and evaluate its worst-case error

bound. The basic idea of the heuristic is to combine a few simple heuristic rules and then

improve the schedules by re-arranging the order of some special jobs with large setup times or

large processing times on M2.

3.1 YHA algorithm (�1)

The Yoshida and Hitomi algorithm (YHA) [8] optimally solves the flowshop scheduling problem

with setup times. It works in the following manner: Divide S into two disjoint subsets A and

B, where A = {JiŠs
1
i +ai-s

2
i ≤ bi}and B = {JiŠs

1
i +ai-s

2
i > bi}. Sequence the jobs in A in

nondecreasing order of s1i +ai-s
2
i and the jobs in B in nonincreasing order of bi. Arrange the

ordered subset A first, followed by the ordered subset B.

Let s11 =9, a1 = 3, s12=2, a2 = 4, s13=3,a3 = 2, s21=7, b1 = 4, s22=1, b2 = 7, s23=2, b3 = 3,

s1 = 20, and t1 = 25.

Job number Set A Set B

1 None s11 + a1 − s21=9+3-7=5>4

2 s12 + a2 − s22=2+4-1=5<7 None

3 s13 + a3 − s23=3+2-2=3<3 None

Table 1: Values considered in �1

Thus �1 = {J3, J2, J1}. See Figure 2(a).



3.2 Decreasing ratio (�2)

Sequence the jobs in nonincreasing order of (s2i + bi)/(s
1
i + ai).

Job number (s2i + bi)/(s
1
i + ai)

1 (s21 + b1)/(s
1
1 + a1) = 11/12

2 (s22 + b2)/(s
1
2 + a2) = 8/6

3 (s23 + b3)/(s
1
3 + a3) = 5/5

Table 2: Values considered in �2

Then �2 = {J2, J3, J1}. See Figure 2(b).

3.3 Largest job p, q on machine 2 (�3)

Determine jobs Jp and Jq such that

s2p +bp ≥ s2q +bq ≥ max{s2i +biŠJi ∈ S ∖ {Jp, Jq}}.

Job number s2i + bi
1 s21 + b1=7+4=11

2 s22 + b2=1+7=8

3 s23 + b3=2+3=5

Table 3: Values considered in �3

For �3 put job Jp first and keep the other n − 1 jobs in the same order as �2. Then

�3 = {J1, J2, J3}. See Figure 2(c).

3.4 Random sequences �4 and �5

Test if (s1p + ap) + (s1q + aq) ≤ s1 if not then no �4, �5. Otherwise make two sequences

�4: Choose Jp and Jq as the first two jobs. The remaining n− 2 jobs are sequenced randomly:

�4 = {J1, J2, J3}. See Figure 2(c).

�5: Choose Jq and Jp as the first two jobs. The remaining n− 2 jobs are sequenced randomly:

�5 = {J2, J1, J3}. See Figure 2(d).

3.5 Heuristic H1:

(1) Find jobs Jp and Jq such that

s2p +bp ≥ s2q +bq ≥ max{s2i +biŠJi ∈ S ∖ {Jp, Jq}}.

(2) Sequence the jobs by YHA. The schedule is �1 and the corresponding makespan is Cmax(�1).



M1

M2

Machine

Time

M1

M2 Time

J3

J3

J2J3 J2 J1 J1

J3 J2 J2 J1 J1

M1

M2 Time

J1

J1

J3 J3

J1 J2 J2 J3 J3

2          6       9  11                          20           25     28

5  6                  13  15    18       21                  28        32

J2

J2

J3

J3

J1

J1

J2

J2

J3

J3

J1

J1

3   5    7          11                        20           25     28

3   5      8  10  11                18       21                 28        32

J1 J2J2 J3

9       12   14      18   20          25 26  28

5                  12          17 18                25 26 28     31

(a)

(b)

(c)

(d)

M1

M2 TimeJ1

J3

J1J2 J2 J3 J3

J1J2J2 J3J1 J3

J1

2         6                         15     18  20          25 26  28

5 6                  13                  20        24   26 28     31

Figure 2: (a) �1; (b) �2; (c) �3 and �4; (d) �5

(3) Sequence the jobs in nonincreasing order of (s2i + bi)/(s
1
i +ai). The schedule is �2 and the

corresponding makespan is Cmax(�2).

(4) Place job Jp in the first position and keep the other n − 1 jobs in the same positions as

those in step (3). The schedule is �3 and the corresponding makespan is Cmax(�3).

(5) If (s1p+ ap)+ (s1q + aq) ≤ s1, then sequence jobs Jp,Jq as the first two jobs. The remaining

n− 2 jobs are sequenced randomly. The schedule is �4 and the corresponding makespan

is Cmax(�4).

(6) If (s1p+ ap)+ (s1q + aq) ≤ s1, then sequence jobs Jq,Jp as the first two jobs. The remaining

n− 2 jobs are sequenced randomly. The schedule is �5 and the corresponding makespan

is Cmax(�5).

(7) Select the schedule with the minimum makespan from the above five schedules. Let CH1

= min{Cmax(�1), Cmax(�2), Cmax(�3), Cmax(�4), Cmax(�5)}.

In the following, we analyze the error bound of heuristic H1.



Definition 2 Let � be any schedule. We define the critical job J�(k) as the last job such that

its starting time on M2 is equal to its finishing time on M1.

Lemma 1 For schedule �2 defined in Step (3) of heuristic H1, we assume that the completion

time of the critical job J�2(k) on M1 is t, and let J�(v) be the last job that finishes no later than

time t on M1 in a schedule �. The following inequality holds:

Cmax(�2) ≤ Cmax(�) + b�2(k) + s2
�(v+1).

Proof. There is no idle time on machine 2 after the critical job, so if there is no critical job

then Cmax(�2) =
∑n

i=1(s
2
�2(i)

+ b�2(i)) = C★. So, we will always assume there is a critical job

for each of the schedules �i and we have for �2,

Cmax(�2) = t+ b�2(k) +

n
∑

j=k+1

(s2�2(j)
+ b�2(j)). (1)

Under the assumption of lemma 1, J�(v) is the last job that finishes no later than time t on

M1 in a schedule �. We have

v
∑

j=1

(s1�(j) + a�(j)) ≤

k
∑

j=1

(s1�2(j)
+ a�2(j)),

and because
∑n

j=1(s
1
�(j) + a�(j)) =

∑n
j=1(s

1
�2(j)

+ a�2(j)),

M1

M2

Machine

TimeJk ...........

...........

M1

M2 Time...........

...........

t

t

Jk

Jv

Jv

(a)

(b)

< 1                  k>.........

< 1              v>.......

Figure 3: illustrations of (2), (a)Order �2; (b)Order �;

n
∑

j=v+1

(s1�(j) + a�(j)) ≥
n
∑

j=k+1

(s1�2(j)
+ a�2(j)). (2)



Since all the jobs are sequenced in nonincreasing order of (s2
�2(j)

+ b�2(j))/(s
1
�2(j)

+ b�2(j)) in

�2, and because after critical job k on M1, there is no idle time, we have

n
∑

j=k+1

(s2�2(j)
+ b�2(j)) >

n
∑

j=k+1

(s1�2(j)
+ a�2(j)). (3)

From (2) and (3),
n
∑

j=v+1

(s2�(j) + b�(j)) ≥

n
∑

j=k+1

(s2�2(j)
+ b�2(j)). (4)

For schedule �, we have

Cmax(�) ≥ t+

n
∑

j=v+1

(s2�2(j)
+ b�2(j))− s2�(v+1). (5)

Therefore, from (1), (4) and (5), we have

Cmax(�2) = t+ b�2(k) +

n
∑

j=k+1

(s2�2(j)
+ b�2(j))

≤ t+ b�2(k) +

n
∑

j=v+1

(s1�(j)
+ a�(j))

≤ Cmax(�) + b�2(k) + s2�(v+1).

Theorem 1 (CH1 − C★)/C★ ≤ 2/3.

Proof. If
∑n

i=1(s
1
i + ai) ≤ s1, it is obvious that Cmax(�1) = C★ from the Yoshida and Hitomi

algorithm(YHA)[14]. So we assume
∑n

i=1(s
1
i + ai) > s1.

Since all the jobs are resumable and �1 is the best scedule without unavailable time, we have

Cmax(�1) ≤ C★+Δ1. So if Δ1 ≤ 2C★/3, then we are finished. So, in the following, we assume

Δ1 > 2C★/3.

Because Δ1 > 2C★/3 and
∑n

i=1(s
1
i + ai) + Δ1 < C★, we have

∑n
i=1(s

1
i + ai) < C★/3. Let

S′ = {JiŠs
2
i + bi > C★/3, i = 1, 2, ..., n}. It is obvious ∣ S′ ∣≤ 2.

Case 1:∣ S′ ∣= 0

For an optimal schedule �★, according to lemma 1, we have Cmax(�2) ≤ C★+b�2(k)+s2
�★(v+1)

≤

5C★/3.

Case 2:∣ S′ ∣= 1 (Jobs k and v are still as defined in lemma 1.)



In this case, S′ = {Jp}. If s2p ≤ C★/3 and bp ≤ C★/3, then b�2(k) ≤ C★/3 and s2
�★(v+1)

≤

C★/3 and from lemma 1 Cmax(�2) ≤ C★+C★/3+C★/3 ≤ 5C★/3. Otherwise, if s2p > C★/3

or bp > C★/3,we consider schedule �3 obtained in step (4) of heuristic H1 and let the critical

job of �3 be J�3(u). First we suppose that s1p + ap ≤ s1. Now, if
∑u

i=1(s
1
�3(i)

+ a�3(i)) ≤ s1, see

figure 4, then

M1

M2

Machine

TimeJu ...........

........... Ju

< 1                  u>.........

< u+1                  n>.........

Figure 4: Illustrations of �3; Ju on M2 equal to b�3(u) .

Cmax(�3) =

u
∑

i=1

(s1�3(i)
+ a�3(i)) + (

n
∑

i=u+1

(s2�3(i)
+ b�3(i)) + b�3(u))

≤ C★/3 + C★

= 4C★/3

otherwise, let
∑u

i=1(s
1
�3(i)

+ a�3(i)) > s1, Jp is the first job in �3 and s1p + ap ≤ s1, then u > 1,

see figure 5. Thus, we have

M1

M2

Machine

TimeJu ...........

........... Ju

< 1                                                u>.........

< u+1                  n>.........

Figure 5: Illustration of equation with �3; Ju on M2 equal to b�3(u) .

Cmax(�3) = (

u
∑

i=1

(s1�3(i)
+ a�3(i)) + Δ1) + (

n
∑

i=u+1

(s2�3(i)
+ b�3(i)) + b�3(u))

≤ C★ + 2C★/3

= 5C★/3.

For subcase s1p + ap > s1, we have s1p + ap +Δ1 + bp ≤ C★. If the critical job does not exist or

job Jp is the critical job, then we have, see figure 6:



M1

M2

Machine

TimeJP ...........

JP

<                   p                  >

< (1                  n)\p >.........

......... .........
JP

M1

M2 TimeJP ...........

JP

<                   p                  >

< (1               n)\p >.......

......... .........
JP

(a)

(b)

Figure 6: Compare max{s1p + ap +Δ1, s
2
p}. s

1
p + ap +Δ1 in (a), s2p in (b).

Cmax(�3) = max{s1p + ap +Δ1, s
2
p}+ bp +

∑

Ji∈S∖Jp

(s2�3(i)
+ b�3(i))

≤ C★ + 2C★/3

= 5C★/3.

Otherwise, for the critical job J�3(u), u > 1, see figure 7, we have

M1

M2

Machine

TimeJu ...........

Ju

<   1                                u  >

< 1+u                 n >.......

.........
Ju

Figure 7: Illustration of �3; Ju on machine 2 equal to b�3(u).

Cmax(�3) = (

u
∑

i=1

(s1�3(i)
+ a�3(i)) + Δ1) + b�3(u) +

n
∑

i=u+1

(s2�3(i)
+ b�3(i))

≤ C★ + 2C★/3

= 5C★/3.

Case 3:∣ S′ ∣= 2

In this case, we show that the error bound of schedule �4 obtained in step (5) is no more than

C★/3.

Suppose J�4(u) is the critical job for �4, then if u > 2, see figure 8, we have and because



M1

M2

Machine

TimeJu .......

Ju

<  p                                         u  >

< 1+u              n >.......
Ju

Jp Jp

Jp .........

Ju.....
.................

Figure 8: Illustration of �4.

∣ S′ ∣= 2 and u > 2 that means
∑u

i=1(s
1
�4(i)

+ a�4(i)) + Δ1 < C★ and

Cmax(�4) =
u
∑

i=1

(s1�4(i)
+ a�4(i)) + Δ1 + (

n
∑

i=u+1

(s2�4(i)
+ b�4(i)) + b�4(u))

≤ C★ +C★/3 = 4C★/3.

If u = 2, then we have the following contradiction:
∑n

i=1(s
1
i +ai) ≤ C★−Δ1 < C★−2C★/3 =

C★/3 But C★/3 >
∑n

i=1(s
1
i + ai) > (s1p + ap) + (s1q + aq) ≥ min{s2p + bp, s

2
q + bq} > C★/3.

If u = 1, then see figure 9, we have

M1

M2

Machine

TimeJp .......

Jp

<  p  >

< 1+p                  n >.......

Jp Jp

Jp

Figure 9: Illustration of �4 and �5.

Cmax(�4) = (s1p + ap) + (bp +

n
∑

i=2

(s2�4(i)
+ b�4(i)))

≤ C★/3 + C★ = 4C★/3

Similarly for �5. This completes the proof of theorem 1.

From the proof of theorem 1, we see that steps (1). . . (5) of heuristic H1 can produce a solution

with an error bound of no more than 2C★/3, and schedule �4 in step (5), �5 in step (6) can

produce a solution with an error bound of no more than C★/3 in some special situations.

Although we do not know whether the bound is tight or not, [7] contains a (not very realistic)

example to show that the worst case error bound is no smaller than C★/2.



Number of Optimal solution Average Largest
jobs, n percentage of H1 error bound error bound

6 77% .025 .045

7 88% .012 .054

8 85% .029 .054

9 84% .019 .044

10 78% .031 .048

11 84% .029 .046

12 75% .032 .050

Table 4: Computational results for heuristic 1

4 COMPUTATIONAL RESULTS

In this paper, we provided the details only for heuristic H1 that applies to the case where the

unavailable time is on machine 1. The paper [7] also contains heuristic H2 that applies to the

case where the unavailable time is on machine 2. We present our computational results for

both H1 and H2 in tables 4 and 5 respectively. Both heuristics have a worst case error bound

no larger than 2C★/3. In order to determine how tight this error bound is, we implemented

both heuristics using the programming language JAVA. We simulated randomly generated job

shops with n = 6, 7, . . . , 12. All jobs’ setup times and processing times were random integers

between 1 and 10. The unavailable time was determined by choosing a random number, l

between .1 and .15 and another random number between, k between .2 and .25. Then, the

unavailable time for machine 1 was the interval:
[

⌊l ⋅

n
∑

i=1

(s1i + ai)⌋, ⌊k ⋅

n
∑

i=1

(s1i + ai)⌋

]

where ⌊ ⌋ is the floor function.

A similar interval was used for machine 2. We experimented with various sized intervals for the

unavailable times and the intervals choosen seemed the most reasonable. We calcululated 100

simulations for each value of n. The value of C★ was determined by considering the makespan

for all permutations of the jobs and choosing the best one.

5 CONCLUSIONS

In this paper we studied the two-machine flowshop scheduling problem with anticipatory setup

times, resumable setup times and processing times, and an availability constraint imposed on

one of the machines. Wang and Chang [7] presented two heuristics for this problem when the

availability constraint was imposed on machines 1 and 2 respectively. We presented heuristic

H1 including detailed proofs whose details are not found in [7] to show that the worst case

error bound of the heuristic was 2
3 . We also presented a simulation study testing the heuristics

and determined that:



Number of Optimal solution Average Largest
jobs, n percentage of H2 error bound error bound

6 80% .031 .042

7 89% .012 .054

8 82% .045 .079

9 85% .055 .066

10 77% .026 .047

11 84% .042 .089

12 72% .050 .075

Table 5: Computational results for heuristic 2

∙ heuristics 1 and 2 found the optimal solution an average of 82% and 81% percent of the

time;

∙ the average average error bound for heuristic 1 was .025 while the average largest error

bound was .049;

∙ the average average error bound for heuristic 2 was .037 while the average largest error

bound was .065.

The main conclusion is that these heuristics perform much better than their worst case error

bound of .666 suggests.
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