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ABSTRACT 
 

This work introduces the Green Vehicle Routing Problem (GVRP). The GVRP is an extension of the 
well-known vehicle routing problem (VRP). Moreover, the GVRP includes an objective function that 
minimizes weighted distance. Minimizing weighted distance reduces fuel consumption and consequently 
CO2 emissions. Therefore, the GVRP is more environmentally friendly than traditional versions of the 
VRP. This work presents a Mixed Integer Linear Program formulation for the problem and a Local 
Search algorithm to find local optima.  Also, the problem is illustrated using a small problem instance. 

1. INTRODUCTION 
 

The Vehicle Routing Problem (VRP) is the designing of vehicle routes such that total distance traveled by 
all vehicles is minimized. The VRP has multiple applications in the fields of logistics and transportation. 
In fact, any company managing a fleet of vehicles that visits a set of customers needs to solve a VRP. The 
VRP has different objectives according to the goal to be accomplished. The most common objective 
functions (OFs) of the VRP are to minimize total distance traveled by the vehicles, and to minimize total 
traveled time. Often, traveled time is correlated with traveled distance; making minimizing total distance 
traveled the most common OF for the VRP. The VRP was introduced by [1] and was proved NP-Hard by 
[2]. In fact the VRP combines two difficult combinatorial optimization problems, the Bin Packing 
Problem (BPP) and the Travelling Salesman Problem (TSP). The BPP assigns cargo to vehicles, and the 
TSP optimizes vehicle routes.  
 
As it was mention above, VRP problems are at the core of companies such as UPS and FedEx. There are 
multiple variations of the VRP according to problem OFs and assumptions. The most popular one is the 
Capacitated VRP (CVRP). In the CVRP vehicles either deliver or pick-up cargo (but not both) to or from 
a set of customers. Moreover, in the CVRP, customers are visited only once during the planning horizon. 
Another popular version is the VRP with Time Windows (VRPTW). The VRPTW allows customer to be 
visited only during certain periods of time. A third popular version is the pick-up and delivery VRP in 
which vehicles can visit customers more than once to either, deliver cargo, pick-up cargo or both. Finally, 
detailed reviews of VRP and its most important variations are available in [3], [4], and [5]. 
 
Previously, it was mentioned that the most common OF for VRP is total distance traveled minimization. 
Minimizing total distance traveled speed up time deliveries. However, routes that minimize total distance 
traveled are not the most efficient ones from the point of view of fuel consumption and CO2 emissions. 
Therefore, this research proposes an alternative and more environmentally friendly version of the VRP 
that minimizes total weighted distance. The proposed problem is called the Green Vehicle Routing 



Problem (GVRP). Moreover, weighted distance is defined by the product of vehicle weight and distance 
traveled (i.e., ton-miles or ton-km). In fact, fuel consumption is a function weighted distance. That is, a 
heavier truck uses more fuel than a lighter one when travelling the same route. Therefore, minimizing 
weighted distance minimizes fuel consumption, and consequently minimizes CO2 emissions. A greener 
version for the TSP called the Green Single Vehicle Routing Problem (GSVRP) is discussed in [6]. 
Notice that a VRP with only one vehicle is reduced to the TSP. 
 
The GVRP is computationally intractable since it is an extension of the VRP. Consequently, 
approximation algorithms such as tabu search and ant colonies are required to find good solutions in 
acceptable computational times.  The remaining of this paper is a follows: section 2 formally introduces 
the GVRP and presents a Mixed Integer Linear Program (MILP) formulation; section 3 illustrates the 
problem using a small problem instance; section 4 provides a short discussion of GVRP difficulty; section 
5 presents a Local Search algorithm (LS) for the problem; and finally, section 6 is conclusions and 
recommendations for future research.  

2. PROBLEM DESCRIPTION 
 
Since the GVRP is an extension of the VRP, the mathematical formulation for the GVRP is an expansion 
of the CVRP one. Consequently, a mathematical formulation for the CVRP is presented first, and then a 
Mixed Integer Linear Program (MILP) for GVRP is introduced. The CVRP is formally defined as 
follows: given a set of customers with given demands and a set of vehicles with limited capacities used to 
deliver demanded goods to customers, the CVRP consist of minimizing total distance traveled by all 
vehicles such that every customer is visited once. Following is a MILP for CVRP. 
 
Indexes: 
i, j Locations: i, j = 1,…, L; where 1 represents depot, and L is the total number of locations visited 

Parameters: 
dij Distance between locations i and j 
qi Customer i demand in weight units 
Q Vehicle weight capacity  
  
Variables 
xij 1 if a vehicle visits location  j immediately after serving location i 

0 otherwise 
ui Arbitrary real variable 
  
Objective function: 
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Objective function (1) minimizes total distance traveled by all vehicles. Constraint set (2) ensures that K 
different routes start at the depot (i.e., one per vehicle). Constraint set (3) makes sure that exactly K routes 
arrive to the depot. Constraint set (4) guarantees that there is exactly one vehicle arrival to each location. 
Similarly, constraint set (5) guaranteed that there is exactly one vehicle departure from each location. 
Constrain sets (6) and (7) together ensure that vehicle capacities are not exceeded, and that vehicles routes 
include the depot location. Moreover, constraint set (6) is an extension of the Miller–Tucker–Zemlin sub-
tour elimination constraint presented by [7].  Finally, constraint sets (8) and (9) define the nature of binary 
and continuous variables. 
 
The GVRP can be defined as follows: Given a set of customers and a set of vehicles with limited 
capacities, the GVRP is to find the set of routes (i.e., one per vehicle) that minimizes total weighted miles 
while each customer is visited only once. The mathematical formulation for the GVRP is easily 
constructed by expanding the CVRP MILP presented above. That is, by adding a new variable set, a new 
parameter, changing the objective function, and adding three new constraints. These steps are showed 
below: 
 
Additional parameter: 
 
CW Vehicle Curb Weight  (i.e., vehicle weight when empty) 
 
Additional variable: 
yij Total weight (CW + cargo weight) of vehicle traveling between locations i and j 
 
New objective function: 
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New objective function (10) minimizes total weighted distance (i.e., ton-miles, ton-km, etc). 
 
Additional Constraints: 
  

iCWxy ii ∀≥− 011  
(11) 
 

LjiyxQCW ijij ,...,2,0)( =∀≥−+ (12) 

Ljqyy j

L

i
ji

L

i
ij ,...,2

11
==−∑∑

==

 
(13) 

jiyij ,0 ∀≥  (14) 

 
Constraint set (11) ensures that vehicles arrive empty to the depot. That is, the weight of any vehicle 
arriving to the depot is CW. Constraint set (12) links route variables xij with vehicle weight variables yij. 
Constraint set (13) is a typical flow conservation constraint. Finally, constraint set (14) defines the nature 
of the additional variables. 

3.	PROBLEM	INSTANCE	
 
The GVRP will be illustrated using a small problem instance. The problem instance considers 10 
customers that will be served from a single depot. In addition, the instance considers the usage of two 
vehicles, each with a capacity of 12 tons, and a curb weight of 8 tons. Table 1 includes depot and 
customer locations coordinates, customer demands in tons, and distances between locations in miles 
(distances between locations were round to integer values to facilitate the discussion). Figure 1 shows a 
chart with all locations. Notice that location 1 is the depot and it is represented by larger triangle in the 
chart. Also, numbers in parenthesis represent customer demands. For example customer at location 7 is 
expecting a delivery that weights 3 tons. 
 

TABLE 1: PROBLEM INSTANCE DETAILS 
 

L 
Coordinates 

qj 
dij 

x y 1 2 3 4 5 6 7 8 9 10 11 
1 15 6 0 0 84 75 90 23 59 57 42 33 100 74 
2 85 54 2 84 0 50 43 61 61 39 43 61 23 81 
3 90 4 2 75 50 0 89 54 89 66 42 72 73 111 
4 56 87 3 90 43 89 0 74 38 34 63 57 31 48 
5 37 15 1 23 61 54 74 0 51 40 18 25 79 71 
6 24 65 2 59 61 89 38 51 0 24 50 27 63 21 
7 46 54 3 57 39 66 34 40 24 0 30 25 46 46 
8 53 24 3 42 43 42 63 18 50 30 0 30 62 71 
9 26 38 2 33 61 72 57 25 27 25 30 0 71 45 

10 86 77 4 100 23 73 31 79 63 46 62 71 0 78 
11 8 80 1 74 81 111 48 71 21 46 71 45 78 0 

 
 
 



 
FIGURE 1: GRID WITH LOCATIONS 

 

 
 
Figure 2(a) shows the optimal solution for the VRP version of the instance. The VRP optimal solution 
was obtained using the MILP described by equations (1) through (9). Moreover the model was coded 
using OPL and solved with the academic version of IBM ILOG CPLEX Optimization Studio 12.2. For 
the VRP optimal solution, the total distance traveled by both vehicles is 436 miles. Arrows indicate 
vehicle directions, and boxes next to arrows show miles traveled between locations followed by vehicle 
weights.  Total weighted distance for this solution is computed by adding the products of all pairs in the 
boxes. In fact, weighted distance for this solution is 6,002 ton-miles. Similarly, the optimal solution for 
the GVRP was obtained by solving the MILP described by equations (2) though (14). As before, the 
MILP was coded using OPL and solved with the academic version of IBM ILOG CPLEX Optimization 
Studio 12.2. Figure 2(b) shows the optimal solution for the GVRP. Notice that the optimal solution has a 
weighted distance value of 5,642 ton-miles. Also, in the optimal solution for the GVRP, the vehicles 
traveled a total of 477 miles.  
 

FIGURE 2: VRP AND GVRP OPTIMAL SOLUTIONS 
 

 
(a): VRP Optimal solution 

 
(b): GVRP Optimal solution 

 
Notice that in the GVRP optimal solution the vehicles travel 41 additional miles than in the VRP optimal 
solution. However, weighted miles are 360 ton-miles less. Each ton-mile consumes around 3,350 BTU 
[9]. In addtion, a gallon of diesel generates approximately 129,500 BTU [10]. Therefore, saving 360 ton-
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miles saves approximately 9.3 gallons of diesel. Moreover, consuming one gallon of diesel generates 10.1 
kg of CO2. That is, the GVRP optimal solution saves 9.3 gallons of fuel, avoiding the emission of 93.9 kg. 
(i.e., 205.3 lb) of CO2 to the atmosphere.  

4. PROBLEM DIFFICULTY 
 
As it was mentioned before, the GVRP is an extension of the traditional CVRP. Consequently, the GVRP 
is harder to solve since it adds a new set of variables and more constraints. The VRP formulation has 
L(L+1) variables while the GVRP has L(2L+1) variables. Also, the number of constraints for the VRP is 
L(2L+1), while the number of constraints for the GVRP is 4L2. In order to illustrate the effect of the 
problem complexity some test problems were solved to optimality using IBM ILOG CPLEX 
Optimization Studio 12.2. Table 2 shows the results of the experiment. Notice that distances are in miles, 
weighted distances in ton-miles, and time in seconds. 
 

L K 
VRP GVRP 

Var. Const. Dist Wdist Time Var. Const. Dist Wdist Time 
6 2 42 42 203 2455 0.05 72 144 207 2307 0.05 
11 2 132 132 317 4442 3.43 242 484 320 3899 109.8 
11 3 132 132 325 4063 1.39 121 484 333 3810 10.92 
16 2 272 272 403 6985 0.22 512 1024 476 5635.5 7268.43*
16 3 272 272 501 7404 0.58 512 1024 507 7082 1165.22 
16 4 272 272 432 7551 1.89 512 1024 443 6898 274.67 

 
CPLEX solution times for GVRP are considerably larger than CPLEX solution times for VRP. In fact, 
CPLEX was interrupted for the GVRP with 16 locations and 2 vehicles after 121 minutes of 
computational time. Therefore that solution cannot be guarantee as optimal. Also, it is important to 
mention that, in most cases of GVRP, increasing the number of vehicles (without changing L) reduces 
computational time. That can be explained considering that the average number of customer assigned per 
vehicle is smaller, making the problem easier (i.e., smaller TSPs). Finally notice the minimizing distance 
traveled by vehicles does lead to higher weighted distances, which translate in higher CO2 emissions.     

5. LOCAL SEARCH 
 
Since the GVRP is computationally hard, approximation algorithms are required to find good solutions in 
acceptable computational times. Approximation meta-heuristic algorithms such as tabu search and 
simulated annealing uses LS algorithms to explore the solution space when searching for good solutions. 
LS consists of a solution representation and one or more mechanisms to explore the solution space. A 
solution for the GVRP can be represented as a set of vectors S = {[s1, si,,… sj, s1]1 [s1, sn. ,…, sm, s1]2… [s1, 
so,,…, sp, s1]K}, where s1 represents the depot, and si, sj, sn, sm , so and sp are customer locations. Notice that 
each vector represents a route that starts and end at the depot. For example, a possible solution for the 
GVRP instance discussed above is S = {[1, 9, 7, 10, 2, 1]1 [1, 5, 8, 6, 3, 11, 4, 1]2}. Initial solutions are 
generated using construction algorithms. A construction algorithm for the GVRP is to assign locations to 
routes randomly without exceeding vehicle capacities. It is important to mention that generating an initial 
feasible solution (i.e., assigning all locations to routes without exceeding vehicle capacities) can be 



challenging since the construction algorithm is solving a BPP.  Notice that S representation can be 
simplified by removing the depot from the solution since all routes start and end at the depot. The 
simplified solution is S = {[9, 7, 10, 2]1 [5, 8, 6, 3, 11, 4]2}. The OF value (OFV) for S is 7,301 ton-miles 
with vehicle 1initial cargo of 11 tons of cargo and vehicle 2 initial cargo of 12 tons.  
 
Some of the most common moves used to exploring solution neighborhoods are 1opt and 2opt. The 1opt 
mechanism simply takes one location in S and moves it to a different position in any route. An example 
of a 1opt move is to remove location 11 from route 2 and to insert it in route 1 between locations 2 and 
1(i.e., after location 2). The new solution is S1 = {[9, 7, 10, 2, 11]1 [5, 8, 6, 3, 4]2} with an OFV of 7,156 
ton-miles with vehicle 1 initial cargo of 12 tons and vehicle 2 with an initial cargo of 11 tons.  Similarly, 
in a 2opt move, two locations exchange their positions. Exchanging locations 2 and 6 in S1 will lead to S2 = 
{[9, 7, 10, 6, 11]1 [5, 8, 2, 3, 4]2} is an example of a 2opt move. The OFV for S2 is 6,496 ton-miles with 
vehicle 1initial cargo of 10 tons and vehicle 2 with an initial cargo of 13 tons. Notice that the solution is 
infeasible since the maximum capacity of each vehicle is 12 tons of cargo. In many cases accepting 
infeasible solutions is recommended when they provide improvements to OFV. In fact, a 1opt move 
applied on S2 that inserts location 4 between locations 6 and 11 lead to S3 = {[9, 7, 10, 4, 6, 11]1 [5, 8, 2, 
3]2} which is the optimal solution for the problem instance.  
 
A LS algorithm applies all possible moves to a given solution S and selects the move that provides the 
largest improvement over S solution. Then, the move is applied on S and the process is repeated for the 
new solution. The process stops when LS is not able to find a move that improves the quality of S.  

6. CONCLUSIONS 
 
This work presents an extension of the well known VRP called GVRP. The GVRP introduces a new 
objective function that minimizes weighted distance. Minimizing weighted distance reduces fuel 
consumption and consequently, CO2 emissions. Moreover, this research introduces a mathematical 
formulation for the problem and a LS to find local optima. In addition, the problem is illustrated using a 
small instance and the GVRP difficulty is briefly discussed. Finally, areas of future research includes 
generating data sets for the GVRP; and  developing more powerful meta-heuristics such as path re-
linking, simulated annealing, and tabu search. These meta-heuristics are necessary to find good solutions 
to real size problems in acceptable computational time. 
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