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ABSTRACT 

 

This project utilizes classical forecasting techniques to predict international revenue passenger miles for 

U.S. air carriers.  The data are monthly and seasonally unadjusted.  The approach we employ involves 

stabilization of the variance of the series, trend fitting, seasonal adjustment through the use of the dummy 

variable method, and the autoregressive moving average (ARMA) cyclical representation.  Forecasts are 

presented for the period following the end of the dataset.  These forecasts mimic the time series properties 

of the air miles series very well.  We produce forecasts in real time for the last five years of the data set 

and find that the model performs well as judged by traditional forecast measures.   

 

INTRODUCTION 

 

International air passenger travel was interrupted by the events of September 11, 2001.  It is somewhat 

surprising to learn how quickly this series of international revenue passenger miles get back to trend 

following that interruption.  Forecasting such a series is clearly important to air carriers as they attempt to 

predict utilization, costs, input requirements and the like for future years and months, but these methods 

may also be useful for other policymakers as they attempt to predict the requirement for other services 

and to assess the impact of other causes of disruptions in service.    

 

DATA 

 

For this project monthly measures of international air revenue passenger miles of US carriers were 

collected for the range, January 1996 to November 2011.  The source of the data is the Research and 

Innovative Technology Administration of the Bureau of Transportation Statistics [5]. 
 
The series is shown in Figure 1.   Several time series properties are easily observed from the figure.  First, 

the series displays a mild (though significant) upward trend.  Second, the repetitive seasonal nature of the 

data is obvious. Third, the effects on the series of the events of September 11, 2001 are clear with the 

sharp drop in the series at that date.  Finally, we also observe that the variance of the series is positively 

related to its level.   

 

METHOD AND ESTIMATION RESULTS 

 

Transformation 

 

The last observation from the previous paragraph led us to consider modeling in either the square root or 

the natural log of the series.  These are the two most common methods for transforming a time series so 

that the variance is relatively constant. Figure 2 is the series in (natural) log form.  The time series 

properties described above are still evident on Figure 2 with the exception that the variance of the series is 



now relatively constant.  The square root transformation (not depicted) did not stabilize the variance of 

the series as well as the log transformation.  

 
 

 
 
Choosing a Trend 

 
The second step in modeling the series is to choose a trend to fit to the data in log form.  We entertained a 

simple linear trend (though in logs, it’s often called a log-trend) and a quadratic trend in logs as well.  

Figure 1: International Revenue Passenger Miles for the U.S.
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Figure 2: Log of International Revenue Passenger Miles for the U.S.
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Standard complexity penalized model selection criteria were employed in choosing the remainder of the 

modeling.  The two standard penalized likelihood selection criteria are the Akaike information criterion 

(AIC) and the Schwarz information criterion (SIC) represented as follows: 

AIC )log()T/k( 22                     (1) 

 

SIC )log(]T/)Tlog(k[ 2 ,   (2) 

 

where k is the total number of estimated coefficients in the equation, T is the number of usable 

observations, and 2  is the scalar estimate of the variance of the equation's disturbance term.  In this 

particular case the AIC and the SIC are very nearly identical for the simple trend and the quadratic trend.  

We choose the more parsimonious simple trend for further modeling.  

 

Also included in the trend model (and all subsequent estimations) is a “pulse” dummy variable to account 

for the drop in the series that occurs in September of 2001.  We choose a pulse dummy because the series 

returns to trend relatively quickly and (as indicated later) the forecasting equation will eventually include 

autoregressive and moving average terms.  It could, of course, be argued in favor of other dummy 

variable representations for the 9-11 effect. 

 

Modeling the Seasonality  

 

The seasonality of the series is modeled via a set of dummy variables.  Eleven dummy variables (one 

fewer than the number of months, since each equation includes an intercept) were created and included in 

the regression. 

 

Though the data are clearly seasonal by casual observation, we nonetheless also relied in the standard F-

test and the values of the AIC and SIC to determine whether or not the series was subject to seasonal 

variation.  As anticipated, a null hypothesis of non-seasonality was rejected resoundingly for the air miles 

data.  (These results are available from the authors on request.) 

 
Figure 3 depicts a fit to the data including the simple trend, the seasonal dummies and the 9/11 dummy 

variable. 

 

Modeling Cycles 

 

Notice that in Figure 3, the trend and seasonality are clearly well modeled, but the fitted values do not 

“cling” to the series when the series moves above or below the fitted values.  That indicates that there are 

cycles in the data.  A visual examination of the residuals from the estimation with trend and seasonality 

variables entered in the regression also reveals that the residuals exhibit autocorrelation—confirming the 

presence of cycles. 

 

Examination of the autocorrelations and partial autocorrelations of the residual series reveals that the 

autocorrelations “tail off” and the partials “cut off” after lag 1.  This behavior is indicative of a first order 

autoregressive representation, often called an AR(1), of the cyclical nature of the series.  Thus we choose 

to add to the model that additional parameter estimate. Needless to say, the first-order autoregressive term 

is highly significant statistically. 

 

The software we used in this research also allow for “automatic” choice for modeling cycles in the 

residual series.  Using that procedure, based on the AIC and SIC, a model with the first-order 



autoregressive and a first-order moving average term are chosen.  We also use that model for forecasting 

with somewhat improved results.  The graph of that model is nearly identical to figure 4, and thus not 

displayed. 

 

 
 

Figure 3: Simple Trend with Seasonals
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Figure 4: Simple Trend with Seasonals and AR(1)
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FORECASTING RESULTS 

 

As a first exercise in forecasting, we produced forecasts extending past the known data.  These forecasts 

cannot be judged for accuracy (until time passes), but they should exhibit the times series properties of 

this data set.  Figure 5 is the graph of the actual data series with the forecasts represented in the shaded 

area past the end of the data set.  Note here that the transformation into natural logs has been “undone” by 

taking the anti-logs of the series and the forecasts. 

 

 
 

In order to judge the forecast accuracy of a model, it is usually advisable to generate forecasts in “real 

time” for known values of the series.  The idea is to estimate the model using a sub-sample of the data 

less than the full sample, produce forecasts from that model and compare the forecasts to the actual 

values.  Here, we estimate the model from the beginning of the data through December of 2006 and then 

produce forecasts for twelve steps ahead (January 2007 through December 2007).  Then the model is re-

estimated, adding January 2007 to the estimation period, forecasts are generated for February 2007 

through January 2008.  This method is called sequential updating.  In this way we are able to produce 60 

one-step ahead forecasts, 59 two-step ahead forecasts, and so forth.  These forecasts can then be 

compared to the actual values of the series to assess forecast accuracy. 

 

The results of that exercise are summarized in Table I.  Forecasts at each horizon are compared to the 

actual values by means of standard measures of forecast accuracy. The definitions of these statistics are as 

follows: 
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Figure 5: Forecast Extrapolation, 3 Years Ahead
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Where T is the number of forecast periods, and the RMSE naïve represents the forecasts of no change in 

the series. 

 

The mean error at one step ahead is approximately zero (the value of the series is about 18 working in 

logs, so the mean error of -0.0022739 working in logs is only -0.0001263 as a proportion).  Also, at one 

step ahead, the RMSE is about .02161, or a little over one-tenth of one percent of the mean value of the 

series.  That is very small.  Theil’s U indicates that this forecasting model is considerably more accurate 

than a naïve forecast.   

 

As expected the forecast errors are larger the farther ahead you forecast in general and Theil’s U shows 

that the forecasts from the model are superior to the last known value of the series.  Theil’s U increases 

considerably at 12 steps ahead.  This is because there is not much trend in this dataset, and there is a 

significant amount of seasonality.  For this reason, the actual value twelve steps ahead is generally very 

close to value twelve months prior.  However, a Theil’s U of .90 still considerably outperforms the naïve 

forecast. 

 

Table I: Forecast Error Statistics, AR Model 

 

Steps 

Ahead 

 

Mean 

Error 

Mean 

Absolute 

Error 

 

RMS Error 

 

Theil’s 

U 

 

Obs 

1 -0.0022739 0.0176696 0.0216105 0.2125 60 

2 -0.0041244 0.0216662 0.0259653 0.2132 59 

3 -0.0057847 0.0252462 0.0303724 0.2157 58 

4 -0.0073922 0.0296147 0.0348217 0.2169 57 

5 -0.0089098 0.0328857 0.0385220 0.2268 56 

6 -0.0107532 0.0343536 0.0404595 0.2123 55 

7 -0.0124804 0.0370219 0.0428528 0.2503 54 

8 -0.0142906 0.0378767 0.0440188 0.2671 53 

9 -0.0160589 0.0389867 0.0452091 0.3123 52 

10 -0.0178693 0.0404481 0.0463359 0.3661 51 

11 -0.0196736 0.0410867 0.0467377 0.4199 50 

12 -0.0214184 0.0414010 0.0471722 0.9024 49 

 

 

Recall that the “automatic fit” for cycles chose a cyclical model with a first order regressive term and a 

first order moving average term, that is, an ARMA(1,1).  We estimated that model as well.  It is 

interesting to note that while the moving average term does not meet strict tests of statistical significance, 

the estimation does produce better forecasting results.  Table II presents the same forecast statistics for the 

model with a first-order moving average term included.  For most forecast horizons, the forecast 

improvements for the ARMA model are small, but at 12 steps ahead (one year) the forecasts are almost 

7% more accurate.  We do not have a ready explanation of that particular result. 

 



Table II: Forecast Error Statistics, ARMA Model 

 

Steps 

Ahead 

 

Mean 

Error 

Mean 

Absolute 

Error 

 

RMS Error 

 

Theil’s 

U 

 

Obs 

1 -0.00159 0.017257 0.021093 0.2074 60 

2 -0.00270 0.019996 0.024586 0.2018 59 

3 -0.00392 0.022945 0.027927 0.1984 58 

4 -0.00518 0.025938 0.031590 0.1968 57 

5 -0.00636 0.028840 0.034690 0.2043 56 

6 -0.00788 0.029886 0.036413 0.1911 55 

7 -0.00929 0.032957 0.039326 0.2297 54 

8 -0.01085 0.034156 0.040668 0.2468 53 

9 -0.01242 0.035177 0.041964 0.2899 52 

10 -0.01404 0.036377 0.043374 0.3427 51 

11 -0.01571 0.036859 0.043743 0.3930 50 

12 -0.01753 0.037056 0.043987 0.8415 49 

 

Forecasts can be tested for “optimality” with respect to the data from which the forecasts were generated.  

This test is known as a Mincer-Zarnowicz (M-Z) [5] regression: 

 

    tththt uyy   ,10     (7)  

where y is the forecast variable, h is the number of steps ahead, t is the current time period, and ut is the 

white noise error term.  The test for optimality is then the joint hypothesis that (β0,β1) = (0, 1).  The test is 

whether or not the forecasts are equal, on average, to the realized values of the series.  The results of the 

M-Z test for the ARMA model at the one-step ahead horizon indicate that the model is optimal in the 

sense of Mincer and Zarnowicz.  The calculated value of F(2, 58) = 0.453, with a p-value of 0.64, indicates 

that the estimates of β0 and β1 do not differ from 0 and 1 respectively. 

 
CONCLUSIONS 

 

This paper takes a classical approach to modeling and forecasting international airline passenger miles for 

US carriers.  We identify trend, seasonal, cyclical components, and model the effect of the events of 

September 11, 2001 as a dummy (intervention) variable.  The model performs well in terms of traditional 

forecast statistics, showing significant superiority to a naïve forecasting standard.  The model also passes 

easily the Mincer-Zarnowicz test of optimality. 

 

Forecasts such as those produced here can be adapted to, and be useful for, predicting individual carrier 

demand, airport use, personnel demand, and many other activities related to air travel.  Models such as the 

one produced here are also useful in forecasting seasonal, cyclical, and long-term levels of variables of 

interest.  Such estimations are also valuable in predicting the effects, both short-term and long-term, of 

interruptions in the series.  In the case of international air travel, it is perhaps surprising how quickly the 

series seemed to have returned to trend following an unprecedented interruption.  

 
REFERENCES 

 

[1]   Enders, Walter. Applied econometric time series, John Wiley & Sons,  INC. New York,  2004. 

 



[2] Diebold, Francis X., Elements of forecasting, 4
th
 edition, Thomson, South-Western Publishing, 

Cincinnati, OH, 2007. 

 

[3] Doan, Thomas.  RATS user’s guide.  Estima, Evanston, Illinois, 2010. 

 

[4] Mincer, J. and Zarnowicz.  “The evaluation of economic forecasts,” in J. Mincer (ed.) Economic 

forecasts and expectations. 1969. 

 

[5] Source for the data:  http://www.bts.gov/xml/air_traffic/src/datadisp.xml 

 

http://www.bts.gov/xml/air_traffic/src/datadisp.xml

