
Simple Heuristics for the Generalized Quadratic Assignment Problem

Alan McKendall
Department of Industrial & Management Systems Engineering, West Virginia University

325A Mineral Resources Building, Morgantown, WV 26506
Email: Alan.McKendall@mail.wvu.edu

ABSTRACT

The generalized quadratic assignment problem (GQAP) can be stated as the problem of assigning M
machines to N locations, where M > N and one or more machines can be assigned to each location
without exceeding the capacities of the locations. Although the QAP is a well-researched problem, there
are very few papers in the literature which focuses on the GQAP. In this paper, a construction algorithm
and a local search heuristic are developed for the GQAP. Also, a mathematical model is presented for the
problem, and a problem instance will be used to illustrate the solution techniques.

Keywords: Facility layout problem, Generalized quadratic assignment problem, Heuristics

INTRODUCTION

The problem of assigning M machines to N locations on the plant floor of a manufacturing facility such
that the sum of material handling and installation costs is minimized is known as the machine layout
problem. For this problem, the plant floor is represented as an array of N equal size grid units, each
having enough capacity to store any of the M machines. Therefore, this problem can be modeled as a
quadratic assignment problem (QAP). The QAP was introduced by Koopmans and Beckmann (1957),
and was proven to be NP Hard by Sahni and Gonzales (1972). See Burkard et al. (1998) and Loiola et
al. (2007) for an extensive review of the solution techniques for the QAP.

A generalization of the machine layout problem defined above is to assign one or more machines to each
location on the plant floor such that the plant floor may be represented as an array of unequal-area grids.
More specifically, M machines, which may have different space (area) requirements, are assigned to N
locations of varying sizes (M > N) such that the capacities of the locations are not exceeded. This
extended machine layout problem can be modeled as a generalized quadratic assignment problem
(GQAP), which was introduced by Lee and Ma (2004). Other applications of the GQAP are to assign
sets of equipment to manufacturing sites as described in Lee and Ma (2004) and to assign sets of
containers to storage locations in container yards as described in Cordeau et al. (2006). In this paper, the
GQAP is defined as the problem of assigning M machines to N locations (M > N) such that the capacity
of the locations are not exceeded and the sum of material handling and installation costs is minimized.

The formulation of the GQAP is given below and is an adaptation of the model presented by Lee and Ma
(2004).

Minimize z = ∑ ∑∑∑∑∑
= = = = ==

+
M

i

M

i

M

j

N

k

N

l
jlikklijijkl

N

k
ikik xxdfcxa

1 1 1 1 11
 (1)

s.t. 1
1

=∑
=

N

k
ikx , i = 1, …, M (2)

 kik

M

i
i Cxr ≤∑

=1

, k = 1, …, N (3)

 xik = {0, 1}, i = 1, …, M, k = 1, …, N (4)

where M is the number of machines, N is the number of locations, aik is the cost of assigning (installing)
machine i to (at) location k, fij is the flow of materials from machine i to machine j, dkl is the distance from
location k to location l, cijkl is the unit cost per distance unit of moving materials from machine i (at
location k) to machine j (at location l), ri is the space requirement of machine i, and Ck is the amount of
space available (capacity) at location k. The decision variables are defined as

xik =
⎩
⎨
⎧

.,0
,,1

otherwise
klocationtoassignedisimachineif

Objective function (1) minimizes the sum of the installation and material handling costs. Constraints (2)
ensure that each machine is assigned to only one location. Constraints (3) ensure that the space capacity
of each location is not exceeded, and the restrictions on the decision variables are given in (4).

The term in objective function (1) used to obtain material handling cost has a quadratic term (i.e., product
of two variables). As a result, the mathematical formulation (1) – (4) is nonlinear and is called a binary
integer nonlinear programming model. The model is linearized by substituting wijkl for xikxjl. Then, replace
objective function (1) with

 Minimize z = ∑ ∑∑∑∑∑
= = = = ==

+
M

i

M

i

M

j

N

k

N

l
ijklklijijkl

N

k
ikik wdfcxa

1 1 1 1 11
 (1’)

and add the following constraints
 xik + xjl – 1 < wijkl for i, j = 1, …, M, k, l = 1, …, N where j ≠ i and l ≠ k (5)
 wijkl = 0 or 1 for i, j = 1, …, M, k, l = 1, …, N where j ≠ i and l ≠ k (6)

As a result, the linearized model (i.e., a binary integer linear programming model) for the GQAP consists
of objective function (1’) subject to constraints (2) – (6). This model will be used in the next section to
solve a small GQAP instance.

The GQAP literature is very limited. Lee and Ma (2004) presented the first formulation for the GQAP.
Also, the authors presented three methods for the linearization of the formulation, and a branch and bound
algorithm to optimally solve the GQAP. Hahn et al. (2008) presented a new algorithm based on a
reformulation linearization technique (RLT) dual ascent procedure to optimally solve the GQAP.
Similarly, Pessoa et al. (2008) presented two exact algorithms for the GQAP which combine a previously
proposed branch and bound scheme with a new Lagrangean relaxation procedure over a known RLT
formulation. It is important to note that the exact algorithms presented above are unable to solve large-
size problems in reasonable time. However, the following heuristics (or approximation algorithms) are
able to obtain “good” solutions for large-size problems in reasonable time. Cordeau et al. (2006)
presented a linearization of the GQAP formulation as well as a memetic heuristic for the GQAP, which
combines genetic algorithms (Holland, 1975) and tabu search (Glover, 1986). Mateus et al. (2011)
proposed several GRASP (greedy randomized adaptive search procedure) with path-relinking heuristics
for the GQAP using different construction, local search, and path-relinking procedures.

In this paper, a construction algorithm and a local search heuristic are developed for solving large-size
GQAP instances. The paper is organized as follows. Next, an illustrative example is presented and solved
using the mathematical formulation presented above. Afterwards, construction algorithms and a local
search technique are presented for the GQAP. Then concluding remarks are given.

ILLUSTRATIVE EXAMPLE

Consider a GQAP where 6 machines are assigned to 4 locations on the plant floor. First, the space
requirements of each machine is determined by obtaining the footprints, personnel space needed, and
material storage requirements for each machine. The space calculations are summarized in Table 1 below.
Notice machine 2 requires 120 ft2 of space.

 Area (square feet)

Machine Footprint Equipment Personnel Material
Total
(ri)

1 5 ft x 10 ft 50 20 20 90
2 6 ft x 10 ft 60 20 40 120
3 5 ft x 6 ft 30 20 50 100
4 5 ft x 8 ft 40 20 50 110
5 5 ft x 10 ft 50 20 40 110
6 5 ft x 6 ft 30 20 20 70

Total area required 600
Table 1. Calculations of space requirement (ri) for each machine i.

Next, the plant floor configuration is given in Figure 1. The dimensions, area capacities, and centers of
the locations (centroids) for the four locations (sites) are given in Table 2. For instance, location 2 is 20
feet long by 10 feet wide, and the centroid is at (25, 15). Therefore, location 2 has 200 square feet of
capacity. Once the centroids are obtained, the distances between locations are calculated using the
rectilinear distance measure. If (ak, bk) and (al, bl) are the centroids for locations k and l, respectively, then
the distance between the locations is lklk bbaa −+− . See matrix dkl for distances between locations.

20 1 2
 (25, 15)

15
 (7.5, 10)

10 3 4
 (20, 5) (30, 5)

5

0 5 10 15 20 25 30 35
Figure 1. Plant floor configuration for Production area.

Location Dimension Area (Ck) Centroid 1 2 3 4
1 15 ft x 20 ft 300 sq ft (7.5, 10) 1 0 22.5 17.5 27.5
2 20 ft x 10 ft 200 sq ft (25, 15) dkl = 2 22.5 0 15 15
3 10 ft x 10 ft 100 sq ft (20, 5) 3 17.5 15 0 10
4 10 ft x 10 ft 100 sq ft (30, 5) 4 27.5 15 10 0

Production Area 35 ft x 20 ft 700 sq ft

Table 2. Calculations of capacity (Ck) of each location k, and distances (dkl) between pairs of sites k and l.

The amount of materials (fij) flowing between machines i and j per month are obtained from route sheets
and are given in Table 3. Also, the total cost of installing each machine i to each location k is calculated,
and then the monthly equivalent cost (aik) is obtained and given in Table 3. Assume cijkl = 1 for all i, j, k,
and l. Recall, cijkl is the unit cost per distance unit of moving materials from machine i (at location k) to
machine j (at location l).

1 2 3 4 5 6 1 2 3 4
1 0 33 41 9 16 56 1 700 1,600 1,900 1,400
2 0 0 49 91 78 23 2 1,300 1,800 1,700 800

fij = 3 0 0 0 41 38 44 aik = 3 800 1,400 3,000 1,100
4 0 0 0 0 6 17 4 3,000 800 700 1,500
5 0 0 0 0 0 68 5 1,200 1,500 1,300 1,800
6 0 0 0 0 0 0 6 1,700 800 1,200 1,100

Table 3. Material flow and installation cost data.

Using the linearized mathematical formulation for the GQAP presented above which consist of objective
function (1’) subject to constraints (2) – (6), the optimal solution is obtained for the illustrative example
using MPL modeling language (commercial software) and CPLEX 11.0 solver. Since the variables wijkl
are used only to linearize the objective function, the values of these variables do not give any useful
information and is not given here. However, x13 = x21 = x34 = x42 = x51 = x61 = 1, and all other decision
variables are zero. The total cost of the solution (z*) is $17,165 which is the sum of $8000 (total
installation cost) and $9165 (total material handling cost). More specifically, machines 2, 5, and 6 are
assigned to location 1. Machine 4, 1, and 3 is assigned to location 2, 3, and 4, respectively. See optimal
layout (assignment) in Figure 2. Since each machine is assigned to a location, and the capacity of the
location is not exceeded, the optimal solution obtained is feasible. See Table 4. For instance, machines 2,
5, and 6 require 120, 110, and 70 square feet of area, respectively. Thus, a total of 300 square feet of area
is required for location 1, which has 300 square feet of area. Therefore, the remaining capacity (unused
area remaining) is zero.

1 2
 4

 2, 5, 6
 3 4
 1 3

Figure 2. Layout of Production area.

Location
Area
(ft2) Machine

Area (ft2)
Required

Remaining
Capacity (ft2)

1 300 2, 5, 6 300 0
2 200 4 110 90
3 100 1 90 10
4 100 3 100 0

Table 4. Details of optimal solution.

SOLUTION TECHNIQUES

Since the mathematical model can only be used to solve small-size problems in reasonable time,
heuristics are developed for the GQAP. As a result, additional notation is used to give another formulation
of the GQAP. The solution is represented as

S = (s(1), s(2), …, s(M))
where s(i) = k, which is equivalent to saying location k is assigned to machine i. The solution is feasible if
the following constraints hold,
 ∑

=∀ kistsi
ir
)(..

< Ck for k = 1, …, N (7)

The total cost of the solution is obtained using the following equation.

TC(S) = ∑
=

M

i
iisa

1
)(+∑∑

=
≠
=

M

i

M

ij
j

jsisijjsiijs dfc
1 1

)()()()((8)

For example, consider the solution S = (3, 1, 4, 2, 1, 1) for the illustrative example given above (see
Tables 1 – 3). That is, s(1) = 3, s(2) = 1, s(3) = 4, s(4) = 2, s(5) = 1, and s(6) = 1. More specifically,
machines 2, 5, and 6 are assigned to location 1, machine 4 to location 2, machine 1 to location 3, and
machine 3 to location 4. Notice, this is the same optimal solution obtained above using the mathematical
formulation. For location 1 (i.e., k = 1), consider equation (7).

∑
=∀ 1)(.. istsi

ir < C1 or ∑
= 6,5,2i

ir < C1 .

Recall, r2 = 120, r5 = 110, r6 = 70, and C1 = 300. Therefore,
 ∑

= 6,5,2i
ir = 120 + 110 + 70 = 300 < C1 = 300.

Thus, the capacity constraint for location 1 holds. It is easy to validate that the constraints for locations 2
and 3 also hold. As a result, the solution S = (3, 1, 4, 2, 1, 1) is feasible. Now the total cost of the solution
is obtained using equation (8), which is $17,165 which is the sum of $8000 (total installation cost) and
$9165 (total material handling cost).

This formulation which minimizes objective function (8) subject to constraint (7) is called the
combinatorial optimization problem (COP) formulation. It has fewer variables (s(i)), constraints, and
solutions compared to the mathematical formulation given earlier. See comparison of models in Table 5
where M = 6 and N = 4 as in the illustrative example. Notice the number of constraints in the
mathematical model is based on the number of constraints for constraints (2), (3), and (5) where the
restrictions on the variables are not considered. Also, the number of solutions for both models considers
all possible sets of values for each variable, whether the solutions are feasible or infeasible. More
importantly, the solution space is much less for the COP model, only 4096 solutions compared to
16,777,216. Therefore, it is much more efficient using the COP formulation. Next, a construction
algorithm for the GQAP is presented.

M = 6, N = 4 Math Model COP Model
Number of Variables M(N) = 24 M = 6
Number of Constraints M + N + M(M-1)(N)(N-1) = 370 N = 4
Number of Solutions 2M(N) = 16,777,216 NM = 4096

Table 5. Comparison of the models.

The following construction algorithm is used to generate a solution for the GQAP.

Step 1: Initialize capacity of locations (i.e., C(k) = {C(1), C(2), …, C(N)}).
 Initialize space requirement of machines (i.e., r(i) = {r(1), r(2), …, r(M)}).
Step 2: Sort machines in descending order with respect to r(i) in the eligible machine set (EMS) and

break ties by selecting machine with lower machine number.
Step 3a: Set k = 1;
Step 3b: If k > N, then go to step 5b. Else go to position 1 of the EMS (i.e., set u = 1).
Step 4: Set i = the machine in the uth position in EMS.
Step 5a: If r(i) < C(k)

Assign machine i to location k (i.e., set s(i) = k), and set C(k) = C(k) – r(i);
Remove machine i from EMS. If EMS is empty, then go to step 5b;
If C(k) < r(i) for Last(i) in EMS, then set k = k + 1 and go to step 3b;
Else Go to step 4.

Else Set u = u + 1 and go to step 4.
Step 5b: Terminate algorithm. If EMS is empty, then display feasible solution S. Else display “No

feasible solution!”

To illustrate the construction algorithm, consider illustrative example presented earlier (see Tables 1 – 3).
Iteration 1: In step 1, let C(k) = {300, 200, 100, 100} and r(i) = {90, 120, 100, 110, 110, 70}. In step 2,
obtain EMS = {2, 4, 5, 3, 1, 6}, and set k = 1 (start with location 1) in step 3a. In step 3b, since k = 1 < 4
= N, set u = 1 (start at position 1 in EMS). Since machine 2 is in position 1, set i = 2 in step 4. In step 5a,
since r(2) = 120 < 300 = C(1), set s(2) = 1 (assign machine 2 to location 1), obtain C(1) = C(1) – r(2) =
300 – 120 = 180, and remove machine 2 from EMS. Thus, EMS = {4, 5, 3, 1, 6}. Since C(1) = 180 > 70
= r(6), go to step 4.
Iteration 2: In step 4, set i = 4. In step 5a, since r(4) = 110 < 180 = C(1), set s(4) = 1, obtain C(1) = C(1) –
r(4) = 180 – 110 = 70, and obtain EMS = {5, 3, 1, 6}; Since C(1) = 70 = r(6), go to step 4.
Iteration 3: In step 4, set i = 5. In step 5a, since r(5) = 110 > 70 = C(1), set u = 1 + 1 = 2, and go to step 4.
Iteration 4: In step 4, set i = 3. In step 5a, since r(3) = 100 > 70 = C(1), set u = 2 + 1 = 3, and go to step 4.
Iteration 5: In step 4, set i = 1. In step 5a, since r(1) = 90 > 70 = C(1), set u = 3 + 1 = 4, and go to step 4.
Iteration 6: In step 4, set i = 6. In step 5a, since r(6) = 70 = C(1), set s(6) = 1, obtain C(1) = C(1) – r(6) =
70 – 70 = 0, and obtain EMS = {5, 3, 1}. Since C(1) = 0 < 90 = r(1), set k = k + 1 = 2, and go to step 3b.
Iteration 7: In step 3b, since k = 2 < 4 = N, set u = 1, and set i = 5 in step 4. In step 5a, since r(5) = 110 <
200 = C(2), set s(5) = 2, obtain C(2) = C(2) – r(5) = 200 – 110 = 90, and obtain EMS = {3, 1}. Since C(2)
= 90 = r(1), go to step 4.
Iteration 8: In step 4, set i = 3. In step 5a, since r(3) = 100 > 90 = C(2), set u = 1 + 1 = 2, and go to step 4.
Iteration 9: In step 4, set i = 1. In step 5a, since r(1) = 90 = C(2), set s(1) = 2, obtain C(2) = C(2) – r(1) =
90 – 90 = 0, and obtain EMS = {3}. Since C(2) = 0 < 100 = r(3), set k = 2 + 1 = 3, and go to step 3b.
Iteration 10: In step 3b, since k = 3 < 4 = N, set u = 1, and set i = 3 in step 4. In step 5a, since r(3) = 100 =
C(3), set s(3) = 3, obtain C(3) = C(3) – r(3) = 100 – 100 = 0, and obtain EMS = {}. Since EMS is empty,
go to step 5b. In step 5b, the algorithm is terminated, and the solution S = {2, 1, 3, 1, 2, 1} is displayed. In
other words, machines 2, 4, and 6 are assigned to location 1, machines 1 and 5 are in location 2, machine
3 is in location 3, and location 4 is not assigned a machine.

The algorithm presented above either yields a feasible solution or no solution. A solution is not obtained
when the difference between the total machine requirements (total area required by machines) and total
capacity of locations (total area available) is relatively small, and when machines are assigned to locations
such that some of the unused capacities of the locations are relatively large. If this is the case, the above
algorithm can be modified such that in step 2 the machines can be ordered in ascending order, instead of
descending order. Also, instead of starting at the first location, the algorithm can start at the last location
(k = 4), and reduce k until all machines are assigned to locations. The different combinations of these
modifications result in four different algorithms, which can be used such that a solution can always be
generated. Next, an algorithm used to improve the constructed solution is presented next.

The following improvement algorithm, called the steepest descent local search heuristic, is used to
improve the solution obtained from the construction algorithm presented above.

Step 1: Construct a solution, S0 = (s(1), s(2), …, s(M)), using the above construction algorithm, and

obtain its cost, TC(S0) using objective function (8).
Step 2: Evaluate all feasible solutions obtained from all possible drop/add operations on S0 and all

possible pairwise exchange operations on S0.
Step 3: Pick best solution, S, with respect to cost, TC(S). If TC(S) < TC(S0), set S0 = S, TC(S0) = TC(S),

and go to step 2. Else, terminate heuristic and display solution S0.

The drop/add operation (u, v; v’) represents exchanging location v assigned to machine u with location v’
(drop v and add v’). For example, if S0 = {2, 1, 3, 1, 2, 1}, then the drop/add operation (1, 2; 4) produces
the solution {4, 1, 3, 1, 2, 1}. In other words, machine 1 assigned to location 2 is reassigned to location 4.
Constraint (7) where k = 4 can be used to check for feasibility of solution. Since solution is feasible, the
objective function value (OFV) of the solution is obtained using (8). All possible drop/add operations for
each machine is considered. Since there are N = 4 locations, and each machine is already assigned to one
location, there are N – 1 = 3 possible operations for each machine. Since there are M = 6 machines, there
are M(N – 1) = 6(3) possible drop/add operations.

The pairwise exchange operation (u, v; u’, v’) represents exchanging location v assigned to machine u
with location v’ assigned to machine u’. For example, if S0 = {2, 1, 3, 1, 2, 1}, then the pairwise exchange
operation (1, 2; 3, 3) produces the solution {3, 1, 2, 1, 2, 1}. In other words, machine 1 assigned to
location 2 exchanges locations with machine 3 assigned to location 3. Constraints (7) where k = 2 and 3
can be used to check for feasibility of solution. Since solution is infeasible for k = 2, the objective
function value (OFV) of the solution is not calculated using (8). All possible pairwise exchange
operations are considered. Since two machines are swapping locations and there are M = 6 machines,
there are a combination of M = 6 pick two (M(M – 1)/2 = 15) possible pairwise exchange operations.
However, if u’ = v’, the solution does not change and is not considered. For instance, if S0 = {2, 1, 3, 1, 2,
1}, then the operation (1, 2; 5, 2) produces the same solution {2, 1, 3, 1, 2, 1}; therefore there are always
less than M(M – 1)/2 pairwise exchange operations when a location has more than one machine assigned
to it.

To illustrate the steepest descent local search heuristic, consider illustrative example presented earlier (see
Tables 1 – 3). In iteration 1, the solution S0 = {2, 1, 3, 1, 2, 1} is obtained using the proposed construction
algorithm in step 1. Also, the total cost (OFV) of the solution S0 (i.e., TC(S0) = $21,255) is obtained using
(8). In step 2, all possible solutions are obtained for S0. See Tables 6 and 7. Notice most of the solutions
are infeasible, since the problem is tightly constraint (i.e., difference between the total machine
requirements (total area required by machines = 600 ft2) and total capacity of locations (total area
available = 700 ft2) is relatively small (100 ft2)). Nevertheless, operation (4, 1; 5, 2) produces the solution
S = {2, 1, 3, 2, 1, 1}, which has the lowest cost (i.e., TC(S) = $18,050) in step 3. Since TC(S) = $18,050 <
$21,255 = TC(S0), set S0 = S = {2, 1, 3, 2, 1, 1}, TC(S0) = $18,050, and go to step 2. In step 3 of iteration
2, operation (3, 3; 4) produces the solution S = {2, 1, 4, 2, 1, 1}, which has the lowest cost (i.e., TC(S) =
$17,460). Since TC(S) = $17,460 < $18,050 = TC(S0), set S0 = S = {2, 1, 4, 2, 1, 1}, TC(S0) = $17,460,
and go to step 2. In step 3 of iteration 3, operation (1, 2; 3) produces the solution S = {3, 1, 4, 2, 1, 1},
which has the lowest cost (i.e., TC(S) = $17,165). Since TC(S) = $17,165 < $17,460 = TC(S0), set S0 = S
= {3, 1, 4, 2, 1, 1}, TC(S0) = $17,165, and go to step 2. In step 3 of iteration 4, operation (6, 1; 2)
produces the solution S = {3, 1, 4, 2, 1, 2}, which has the lowest cost (i.e., TC(S) = $17,240). Since TC(S)
= $17,240 > $17,165 = TC(S0), terminate heuristic and display solution S0 = S = {3, 1, 4, 2, 1, 1}, TC(S0)
= $17,165. This solution is called a local optimum; however, since the solution is equivalent to the
solution obtained using the mathematical model, it is also a global optimum.

Operation Solution OFV # Operation Solution OFV
1 (1, 2; 1) {1, 1, 3, 1, 2, 1} ‐‐ 10 (4, 1; 2) {2, 1, 3, 2, 2, 1} ‐‐
2 (1, 2; 3) {3, 1, 3, 1, 2, 1} ‐‐ 11 (4, 1; 3) {2, 1, 3, 3, 2, 1} ‐‐
3 (1, 2; 4) {4, 1, 3, 1, 2, 1} $21,580 12 (4, 1; 4) {2, 1, 3, 4, 2, 1} ‐‐
4 (2, 1; 2) {2, 2, 3, 1, 2, 1} ‐‐ 13 (5, 2; 1) {2, 1, 3, 1, 1, 1} ‐‐
5 (2, 1; 3) {2, 3, 3, 1, 2, 1} ‐‐ 14 (5, 2; 3) {2, 1, 3, 1, 3, 1} ‐‐
6 (2, 1; 4) {2, 4, 3, 1, 2, 1} ‐‐ 15 (5, 2; 4) {2, 1, 3, 1, 4, 1} ‐‐
7 (3, 3; 1) {2, 1, 1, 1, 2, 1} ‐‐ 16 (6, 1; 2) {2, 1, 3, 1, 2, 2} ‐‐
8 (3, 3; 2) {2, 1, 2, 1, 2, 1} ‐‐ 17 (6, 1; 3) {2, 1, 3, 1, 2, 3} ‐‐
9 (3, 3; 4) {2, 1, 4, 1, 2, 1} $20,695 18 (6, 1; 4) {2, 1, 3, 1, 2, 4} $20,495

Table 6. Solutions obtained from add/drop operation.

Operation Solution OFV # Operation Solution OFV
1 (1, 2; 2, 1) {1, 2, 3, 1, 2, 1} ‐‐ 9 (2, 1; 6, 1) Same as S0 ‐‐
2 (1, 2; 3, 3) {3, 1, 2, 1, 2, 1} ‐‐ 10 (3, 3; 4, 1) {2, 1, 1, 3, 2, 1} ‐‐
3 (1, 2; 4, 1) {1, 1, 3, 2, 2, 1} ‐‐ 11 (3, 3; 5, 2) {2, 1, 2, 1, 3, 1} ‐‐
4 (1, 2; 5, 2) Same as S0 ‐‐ 12 (3, 3; 6, 1) {2, 1, 1, 1, 2, 3} ‐‐
5 (1, 2; 6, 1) {1, 1, 3, 1, 2, 2} ‐‐ 13 (4, 1; 5, 2) {2, 1, 3, 2, 1, 1} $18,050
6 (2, 1; 3, 3) {2, 3, 1, 1, 2, 1} ‐‐ 14 (4, 1; 6, 1) Same as S0 ‐‐
7 (2, 1; 4, 1) Same as S0 ‐‐ 15 (5, 2; 6, 1) {2, 1, 3, 1, 1, 2} ‐‐
8 (2, 1; 5, 2) {2, 2, 3, 1, 1, 1} ‐‐

Table 7. Solutions obtained from pairwise exchange operation.

CONCLUSION

The proposed construction algorithm and steepest descent local search heuristic were coded using the
Visual Basic programming language, and the illustrative example was solved on a Pentium IV
1.5GHz PC. It required only 0.17 seconds of run time. Although the optimal solution was obtained
for the illustrative example using the proposed heuristics, they may not always produce the optimal
solution, especially for large-size problems. Therefore, for future research, a more powerful heuristic,
such as tabu search heuristic, which obtains many local optima in search of the global optimum, will be
developed for the GQAP.

REFERENCES

Burkard, R. E., Cela, E., Pardalos, P. M., and Pitsoulis, L.S. The Quadratic Assignment Problem. In
Handbook of Combinatorial Optimization, D.-Z. Du and P.M. Pardalos (eds). Boston, MA: Kluwer, 1998.

Cordeau, J.-F., Gaudioso, M., Laporte, G., and Moccia, L. “A memetic heuristic for the generalized
assignment problem.” INFORMS Journal on Computing, 2006, 18, 433-443.

Glover F. “Future paths for integer programming and links to artificial intelligence.” Computers
& Operations Research 1986; 13(5), 533-549.

Hahn, P. M., Kim, B.-J., Guignard, M., MacGregor Smith, J., and Zhu, Y.-R. “An Algorithm for the
Generalized Quadratic Assignment Problem.” Computational Optimization and Applications, 2008, 40(3),
351-372.

Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan
Press, 1975.

Koopmans, T. C. and Beckmann, M. J. “Assignment Problems and the Location of Economic Activities.”
Econometrica, 1957, 25, 53-76.

Lee, C.-G. and Ma, Z. “The generalized quadratic assignment problem,” Research Report, Department of
Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada, 2004.

Loiola, E. M., de Abreu, N. M. M., Boaventura-Netto, P. O., Hahn, P., and Querido, T. “A Survey for the
Quadratic Assignment Problem.” European Journal of Operational Research, 2007, 176(2), 657-690.

Mateus, G. R., Resende, M. G. C., and Silva, R. M. A. “GRASP with Path-relinking for the Generalized
Quadratic Assignment Problem.” Journal of Heuristics, 2011, 17, 527-565.

Pessoa, A. A., Hahn, P. M., Guignard, M., and Zhu, Y.-R. “Algorithms for the Generalized Quadratic
Assignment Problem Combining Lagrangean Decomposition and the Reformulation-Linearization
Technique.” European Journal of Operational Research, 2010, 206(1), 54-63.

Sahni, S. and Gonzales, T. “P-complete Approximation Problems.” Journal of the ACM, 1976, 23, 555-
565.

